

MPCP Compatibility with 64b/66b Line Coding

Ryan Hirth May 25, 2006

Laser Control with 8b/10b Line Coding (802.3ah)

- MPCP is located in MAC Control Sublayer
- MPCP is not aware whether 8b/10b or 64b/66b encoding is used. MPCP is based on time (time unit = 16 ns).
- Laser on/off is controlled by Data Detector function in PCS (IEEE802.3-2005, section 65.2.2 Burstmode operation).
- In 802.3ah the Data Detector monitors Tx data stream and turns laser off when it sees more then X IDLEs.

Figure 65-6—ONU data decoder state diagram

Laser Control with 64b/66b Line Coding

- 66-bit blocks should be transmitted without segmentation
- The 10Gb/s Data
 Detector instead of
 looking at 10-bit
 code-groups can
 look at 66-bit
 blocks (see state
 machine).
- This would force laser_on and laser_off signals to be asserted only on 66-bit block boundaries.

Figure 65–6—ONU data decoder state diagram (for 64b/66b)

MPCP compatibility with 64b/66b Encoding

- The laser_on signal is moved <u>down</u> to the nearest 66-bit block boundary.
- The laser_off signal is moved <u>up</u> to the nearest 66-bit block boundary.
- This may increase the laser_on time by ≤ 7+7=14 bytes per burst, or 0.7 TQ in the worst case.
- According to IEEE 802.3ah, MPCP clock has tolerance of 8 TQ or 12 TQ
 - guardThresholdONU = 8 TQ
 - guardThresholdOLT = 12 TQ
- Rounding up to 66-bit is within granting accuracy of existing MPCP and does not result in any additional overhead

10 Gb/s EPON: laser_on granularity = 66 bits (6.4 ns)

Conclusion

- Data detector is a function of PCS.
 - Data detector should operate on Xb/Yb encoder output blocks (10 bits for 8b/10b; 66 bits for 64b/66b).
 - Data detector always turns laser on and off on a block boundary.
- No changes to MPCP are required to use 64b/66b.

