

Stefano Bottacchi Infineon Technologies, AG

Stefano Bottacchi COM FO MOD January 13, 2004

Content

- 1. Introduction
- 2. Link Components and Key Parameters
- 3. Conclusions

Introduction

New Standards for Old Technologies

- Development of 10GbE standard over MMF has two principal targets:
 - 1. To achieve at least 300 meters link length using existing multi-mode fiber plant.
 - 2. Low cost technologies and testing procedure are fundamental requirements due to potentially large volume market revenue.

The Technology Scenario

- To match the *first* target, the old-installed MMF must be used every where they are available, regardless manufacturing date and related bandwidth performances
- To match the second target, low cost optical technologies and proper packaging must be used:
 - 1. Existing MMF must be used instead of new installations.
 - VCSEL and PIN diodes are low-cost reliable optics.
 - 3. High density silicon System-on-Chip (SOC)
 - 4. Plastic packages and optical receptacles

Link Components and Key Parameters

Content

- 10GbE Link Diagram
- 10GbE TOSA
- Multi-Mode Fiber Link
- 10GbE ROSA

Scope

- In the following the components of an MMF link with their drawback and options for improvements are discussed.
- Options for improvements are intended to increase the link budget and therefore increase the margin for ISI.
- Some of the improvements are challenging for low cost or direct modulation sources.

10GbE Link Diagram

10GbE TOSA

- Principal TOSA optical signal drawbacks are:
 - 1. Minimum average output power is -8.2dBm
 - Improvement to higher average power ⇒ -5dBm
 - 2. Minimum extinction ratio for direct modulation is 3.5dB
 - Improvement to higher Extinction Ratio ⇒ >6dB
 - 3. Laser limited Modulation Bandwidth to less then 10GHz at 1310nm and not-symmetrical rise-fall time generate skewed optical eye diagram with eye opening penalty.
 - Improvement to higher BW ⇒ >15GHz
 - Improvement to $T_{rise} \sim T_{fall} < 30ps$
 - 4. High Relative Intensity Noise peak, RIN>-128dB/Hz, can degrade high power (>-3dBm) detected signal.
 - Improvement to lower RIN<-135dB/Hz</p>

MMF Link Characteristics

- Signal impairment over legacy MMF is due to:
 - Attenuation

■ 850nm =>

Modal Bandwidth (OFL)

- Attenuation is of minor relevance due to short link length
- Dispersion is the link length limiting factor for 10GbE over legacy MM fiber.

4 dB/km

MMF OFL Bandwidth

- Standard multimode fiber bandwidth is specified under OFL condition which assumes a broad far-field light source, like LED.
- Under OFL condition, all bound modes are fully excited and the MM fiber bandwidth results quite repetitive and fits with Gaussian
- Typical OFL condition refers therefore to LED sources.
- 10GbE needs for high speed directly modulated semiconductor *laser* sources like VCSEL, FP, DFB, which *under-fill* fiber modes.

10GbE over MMF

- Due to relative narrow far-field of laser beam, just few mode are excited, limiting the light propagation to some mode groups.
- Missing OFL conditions makes the fiber bandwidth and the impulse response strongly dependent on the launching radial coordinate over the fiber cross-section.
- Using laser sources, the fiber bandwidth can be lower or even higher then measured under OFL conditions.

MMF OSL Bandwidth

- The Differential-Mode-Delay (DMD) is highly depending on the subset of excited bound modes.
- Refractive index pin or dip in the axial region makes the pulse propagation mostly distributed among delayed contributions.
- Offset Launching (OSL) conditions must therefore be carefully defined in order to guarantee proper MMF bandwidth when laser sources are deployed.
- Joint measurements of OSL conditions over existing MMF plant are needed to guarantee consistency.

MMF OSL Conditions

■ If the coupled laser light satisfies Encircled Flux standards, reasonable bandwidth consistency with OFL conditions, with *repeatable results*, can be achieved.

Offset Launch Drawbacks

- Higher order mode characteristic of OSL excitation are more sensible to perturbations affecting outer core region.
- Depending on the launching radial coordinate the higher order mode group can exhibit low or high value of DMD.
- Any displacement due to connector junctions modifies the launching conditions and then the output pulse DMD.
- Bent radius has stronger effect on the higher order mode component, making the output pulse more sensible to microbending and cable assembling stresses.
- Different MMF samples have different OSL optimum conditions, according to their refractive index profile.

10GbE ROSA

- Principal ROSA limitations and requirements at 10GbE are the followings:
 - 1. Photodetector active area below 40µm makes the output pulse affected by fluctuations due to *modal noise*.
 - Improvement to >60µm active area
 - Design trade-off between large active area and high bandwidth due to junction parasitic capacitance.
 - 2. In order to uniquely define ROSA sensitivity it would be necessary to specify the reference transmitter (the reference TOSA).

10GbE ROSA

- 4. Transimpedance amplifier linearity requirements for proper EDC operation.
 - Definition of the OMA to achieve 1dB compression in transimpedance gain.
 - At higher received power a reduced linearity is required due higher SNRe available for EDC operation.
- 5. Frequency response and noise bandwidth matched to back-to-back eye diagram requirements.
 - Properly designed ROSA should not benefit from back-toback EDC operation (negligible BTB ISI).
 - Negligible eye closure can be achieved with a frequency response (V/W) shaped according to IV-order Bessel-Thompson filter with frequency cutoff at f_c=7.5GHz and phase distortion less then 10% at the bit-rate.

10GbE ROSA

- 6. Noise density should be almost flat up to at least the bit rate in order to minimize EDC noise enhancements effects.
 - Due to FFE linear filtering, high frequency noise components are enhanced when EDC is working.
- 7. Differential output swing symmetry and reduced phase skew to avoid EDC false ISI detection.
 - Assuming EDC differential input, any asymmetry in the output signals reflect into false detected ISI and a consequent EDC false action (lock to false compensation)
- 8. Minimum output swing at optical sensitivity conditions in order to match EDC sensitivity requirements.
 - ROSA output swing at the optical link sensitivity requirement should be at least 3dB higher then the EDC sensitivity in order to avoid overall optical receiver degradation.

Conclusions

Conclusion

- Components, key parameters and potential improvements have been discussed
- Next question is how to validate improvements
- Decision output, i.e. BER curve etc. is needed to judge a valid link
- Link simulator is needed incorporating references for all link components
- Existing link model might not be sufficient
- Committee to work out link simulator (including non-Gaussian fiber model and standard/reference EDC)
- Existing subsets from several companies need to be merged and aligned to a reference simulation tool.
- Infineon volunteers to contribute on this subject.