Differential Modal Dispersion Emulator for 10Gb/s MMF Links

For IEEE 802.3 10Gb/s on FDDI-grade MMF Study Group

Peter Kirkpatrick
Intel Optical Platform Division
01.06.04

Introduction

- Architecture
- Capabilities and Limitations
- Possible Fit to Standard
- Tap Analysis
- Modeling Round Robin Fibers
- Power Budget
- Future Development
- References

Architecture

- Method to reliably reproduce worst case modal dispersion
- SMF Transversal filter- concept
 - Split SMF to N delays, each with VOA, gain to compensate insertion loss
- Reference (DUT) Tx, electrically bandwidth limited
 - Can be any SMF pigtailed/pluggable Tx
- Reference (DUT) Rx
 - Can be any SMF/MMF pigtailed/pluggable Rx

Capabilities and Limitations

- This test bed can:
 - Create variable DMD to test Rx/EDC performance
 - Weights are continuously variable
 - Delays are fixed, but by varying weights over time a variable delay can be approximated
- This test bed cannot:
 - Evaluate different launch conditions
 - Evaluate the effects of spatial filtering (Rx optics)

Possible Fit to Standard

- Compare to 802.3ae 10GBASE-L Stressed Rx
 - Add DMD Emulator between E/O and Rx
 - Does not test compliance of Rx filtering
- 802.3ae TDP needs modification to evaluate launch
 - Add DMD characterization after known channel

Tap Analysis

- N = 16 Taps
- Tap spacing 50ps
 - Speed of light in fiber, 2.01x10⁸ m/s
 - Delay is 4.96ps/mm
 - $-\Delta I = 10.2 +/- 0.5$ mm = 50.3 +/- 2.5ps
- Maximum offset is 750ps
 - Empirical match to Round Robin fibers
- By weighting taps in real time, effective time delay variation is possible

Tap Analysis

Modeling Round Robin Fibers 2530, 500 MHz*km

Worst of Round Robin Fibers 270 MHz*km

Tap Analysis- another example²

- Pepeljugoski, et al, 2003
- 17 Modes
- Maximum delay 180ps
- From eye diagram this is not the worst case that we have seen

Power Budget

- Compensate insertion loss with 1310nm SOA
- Provide Enough Rx Power to Test Overload

Tx Power	+2 dBm
SOA IL+Gain	+10 dB
Filter IL	-5 dB
Splitter IL	-2.5 dB
Attenuator IL	-1 dB
Power Meter IL	-1 dB
Combiner IL	-2.5 dB
Max Rx Power	0 dBm

EDC Test Bed-Future Development

- Continue working with MMF Channel
 - Reference/DUT Tx
 - Can be any SMF/MMF Tx
 - Launch to MMF (center, offset, OFL, ROFL, other)
 - Use patchcords
 - Leverage previous work
 - Various (worst case) MMF links
 - Reference/DUT Rx
 - Can be any MMF Rx (want all light, linear TIA or AGC)
 - Ideal Rx does not exist now, working with available parts
- Calibrate SMF Channel to results

References

- 1. Understanding Multimode Bandwidth and Differential Mode Delay Measurements and Their Applications, P. Kolesar, D. Mazzarese, Proceedings of the 51st IWCS, November 2002.
- 2. Modeling and Simulation of Next-Generation Multimode Fiber Links, P. Pepeljugowski, S. Golowich, A. Ritger, P. Kolesar, A. Risteski, <u>Journal of Lightwave Technology</u>, Vol. 21, No. 5, May 2003.

