Estimation of Required Filter Complexity

Jesper Hanberg <u>Martin Lobel</u> Henrik Johansen

March 2004 IEEE plenary meeting – Orlando

Intel Communications Group

jesper.hanberg@intel.com

Outline

- Filter complexity
- Simulation approach
- Data sets
- Simulation results
- Conclusion

Investigated filter complexity

- Up to 9 taps in Feed forward filter (FFE)
 T/2 spaced only
- 0-2 taps in Feedback filter (FBE)
 - Error propagation penalty included in results

EDC simulation path

Gaussian noise added in 7.5 GHz BW

Intel Communications Group Page 4

Data sets investigated

- Infineon measured impulse responses
 - Different fiber lengths
- IEEE MMF data
 - Use only Overfill Launch data (L3 files) with BW > 500 MHz km (1300 nm)
 - Impulses scaled to different fiber lengths 50-300 m
- Cambridge computed statistical dataset
 All 195 files. 300 m 17, 20, 23 µm offset launch

Third-party brands and names are the property of their respective owners.

Infineon* measured dataset

One fiber type

- Siecor 62.5 µm
- Approx. 500 MHz km bandwidth (Overfill launch)
- Fibers with lengths from 50 m 550 m
 - Taken from same fiber spool
- Two types of test setup
 - Directly modulated DFB laser
 - External modulated laser (EML)
- Pulse pattern 00000010000000
- Dataset includes calibration pulse measurements

*Stefano.Bottacchi@infineon.com

Infineon measurement setup

inte

Fiber characteristics of Infineon data

Bandwidth of Siecor 62.5 µm fiber is less than average of IEEE L3 files

into

Intel Communications Group

BER vs. SNR for Direct Modulated DFB laser data files

Evaluation procedure as described by Infineon at Vancouver meeting

intel

Penalty vs. length for different filter configurations

Direct modulated DFB laser

Fiber Length

Penalty vs. length for different filter configurations

External modulated DFB laser

Fiber Length

Infineon data summary

- Used fiber has bandwidth comparable to lower end of IEEE L3 worst case fibers
- Equalization possible up to at least 250m fiber length independent of transmitter type
- Results suggest filter consisting of 7 Feed Forward and 1 Feed Back tap as necessary and sufficient

IEEE fibers L3 (1300nm OFL) scaled length, 59 files with OFL >500 MHz km

Percent of files vs. Fiber length having penalty below 5 dB criteria

Intel Communications Group
Page 14

Percent of files vs. Fiber length having penalty below 3 dB criteria

Intel Communications Group

IEEE MMF data summary

- Equalization is possible at 300 m for most fibers (~90% of these worst case fibers)
- Feed forward taps alone does not do the job
- 7 Feed Forward and 1 FB tap is adequate
- Limited gain by using 2 FB taps over 1 FB tap.

Cambridge data (300 m fiber length – all 195 files)

Intel Communications Group

Penalty <5 dB	Filter		Filter	
	9-taps FF and 0-tap FB		7-taps FF and 1-tap FB	
	250 m	300 m	250 m	300 m
IEEE MMF	99.4 %	98.2 %	99.9 %	99.3 %
Cambridge	-	99.2 %	-	99.7 %
Infineon	yes	no	yes	no

Assumption for statistical estimation: fibers represent worst 5% of installed base

Intel Communications Group Page 18

Closing remarks

- Conclusions for different datasets points in same direction
- Simulations should be compared to measurements to verify model
 - Work in progress

Intel Communications Group

Evaluation of simulation data

Follows procedure suggested by Infineon

Limitations of simulation model

Filter is ideal

- no bandwidth limitations
- no noise contribution from filter
- Jitter not considered in BER estimates
- Only thermal noise considered (7.5 GHz BW)

 Divide bit-pattern up into different bit-sequences: 000 001 100 101 010 011 110 111 and use Gaussian distribution on each of these

Ref. C. J. Anderson and J.A. Lyle Electronics letter jan. 1994 vol 30 no 1 p 71

Intel Communications Group Page 23