Technical Feasibility and Definition of Worst Case Channel

Martin Lobel and Henrik Johansen Standards and Advanced Technology

Optical Networking Components Division (OND) Intel Communications Infrastructure Group Intel Corporation

> March 2004 IEEE plenary meeting – Orlando

Intel Communications Group

Today's Key Messages

- An EDC solution for 300 meter MMF is technically feasible.
- Several constrains limit in practice the maximum complexity of the EDC filter.
- The definition of a channel compliance model provides a structured platform to achieve a balanced agreement.

Channel compliance model:

Channels (impulse responses) that can be equalized using an ideal x-tap FFE + y-tap FBE filter with a maximum penalty* of z dB @ BER $\leq 10^{-12}$

Intel Communications Group

compared to back-to-back Copyright© 2004 Intel Corporation

Feasibility – constrains

Circuit feasibility

Filter Complexity to do the job Electrical Power budget

We need to explore the constrains and agree on highest possible filter complexity within these constrains

Intel Communications Group Page 3

Required filter complexity - summary

- Presented data show impulse width ≤ 500ps ~ 5 bits @ 10G
 - Defines the ballpark of filter complexity
- Filter requirements achieving 300m (based on study group data):
 - 5-T FFE + 3 FBE (R. Penty)
 - 7-9 T/2 FFE + 1-2 FBE (J. Hanberg)
 - 10-15 T/2 FFE + 1-3 FBE taps (S. Bhoja)
- Optical power penalty budget range
 - 6-7 dB total penalty
 - 1-1.5 dB Implementation loss/penalty
- Filter architecture trade offs versus distance:
 - 220 m @ 99% coverage possible by FFE architecture
 - 300 m @ 99% coverage possible by DFE architecture

Complexity is dependent on boundary conditions, target distance and Optical Power Penalty

intel

Intel Communications Group

Power budget - EDC Application

Power budget is

Module	Module Power budge	et .	Budget for EDC function*	
XENPAK	6 Watts		750 mW	
ХРАК	4 Watts		500 mW	
X2	4 Watts		500 mW	
XFP – class 1	1.5 Watts		250 mW	

* Based on market survey

Intel Communications Group Page 5

*Third-party brands and names are the property of their respective owners.

Circuit considerations

Bandwidth, Linearity, Noise

- Analog nature of FFE limits max no. of taps to \leq 10 (T/2)
- No FBE constrains within required taps ≤ 4

Power, ballpark numbers

- FFE T/2 tap ~40 –> 20 mW
- FBE tap ~40 -> 20 mW
- Includes overhead, control, I/O etc.

Circuit complexity will limit filter size even if power is acceptable

Intel Communications Group

Feasibility – finding the sheet spot

Circuit feasibility <10 FFF taps, <4 FBE taps

Filter Complexity

7 + 1 taps (300 m, <u>Ideal filter)</u> Électrical Power budget

10 - 15 taps, FFE + FBE

The sheet spot seems to exists – EDC for 300 meter is feasible

Copyright© 2004 Intel Corporation

int

Definition of channel compliance model

Channels / impulse responses that can be equalized using an ideal x-tap FFE + y-tap FBE filter with a maximum penalty* of z dB @ BER ≤ 10⁻¹²

- Channel compliance defined by inverse filter response
 - Allows exact and simple compliance validation of any channel
- Distance options
 - 220 m class: x = k, y = zero and 300 m class: x = m, y = n
- Penalty at defined BER (10⁻¹²)
 - Determines (or is driven) by optical power budget
- Fiber type (50/62.5 um) and wavelength (850/1310) dependency
 - Simple mapping (x, y and z) for various combinations
- Ideal compliance filter
 - x, y, and z combination must leave margin for implementation loss/penalty
- Common ground for modeling platform
 - Noise aspects and calculation of BER estimate of equalized signal

Agreement on x and y link penalty z with target distance and influences optical power budget

Intel Communications Group

*) compared to back-to-back Copyright© 2004 Intel Corporation

Compliance testing

- Golden fiber approach not adequate
 - Impossible to establish set of worst case fibers (and conditions)
- DMD emulator for worst case conditions
 - Optical impulse response required
 - Could be DMD emulator suggested by P. Kirkpatrick, Vancouver meet.
 - Several other options for implementation (V. Bhatt, Vancouver meet.)
- Simple calibration by trace records verification
 - Generated responses can be <u>trimmed</u> against the channel compliance definition
 - Definition of minimum set of responses for validation

Recommendations

Agree on channel compliance model:

Channels (impulse responses) that can be equalized using an ideal x-tap FFE + y-tap FBE filter with a maximum penalty of z dB @ BER $\leq 10^{-12}$

Suggested parameters (starting point):
X = 7-taps, Y = 1-tap, Z = 5 dB @ 500 MHz km (62.5 um)

Assumption:

 Present data is representative of the worst case 5% of installed fiber base.

Question:

- Is the statistics correct? (is the worst case fraction 5% or x%?)

Recommendation matches practical implementation space within electrical power budget of 250-500 mW

Intel Communications Group Page 10