Technical Seminar

"The Impact of PWB Construction on High-Speed Signals"

Chad Morgan

AMP Circuits & Design tyco electronics

Session Outline

- Project background
- Test board description
- Materials review
- Data review

Project

Background

Test Board

Description

Materials

Review

Data

Review

Materials

Traces

System

Conclusions

- Material properties
- Trace properties
- System properties
- Conclusions

Background and AMP Strategy

Project Background

Test Board

Description

Materials Review

Data Review

Materials

Traces

System

Conclusions

- Increasing system speeds (1-10 Gbps)
- Copper vs. optics
- Determine maximum copper performance
- Examine limitations
 - Dielectric materials
 - Trace geometries
 - Interconnect structures
- Explore options
 - RF techniques
 - Modulation schemes

Immediate Plan of Action

Project Background Test Board Description **Materials** Review Data Review Materials Traces System Conclusions

- Construct four sets of test boards
 - Multiple materials
 - Multiple trace structures
- Obtain both time and frequency data to examine copper limitations
- Use proven RF analysis techniques to characterize signal integrity of PWB structures at very high speeds

Board Layout Description

- Project Background Test Board Description **Materials** Review Data Review Materials Traces System Conclusions
- Three sections

 SMAs
 - Known behavior
 - Repeatable
 - Test points
 - Superior behavior
 - Repeatable
 - HS3 connectors
 - High-density
 - Real-world interconnect

Board Design Details

Trace structures for each section

Trace widths: 5, 12, and 19 mils
Trace lengths: 6, 12, and 18 inches
Trace impedances: 50 and 75 Ω
Single-ended and differential signals

All four board sets designed to be identical where possible

 Constant impedance maintained by varying layer thicknesses for each material (priority to maintain trace width)

Materials Review

FR4

Project Background

Test Board

Description

Materials

Review

Data

Review

Materials

Traces

System

Conclusions

- Material properties
 - Woven glass/epoxy resin composition
 - Nelco 4000-6 (Tg=180°C) laminate & prepreg
 - Standard fabrication procedures
 - Many thicknesses available
- Electrical properties
 - $-\varepsilon_r=4.4$ - tan $\delta=0.018$
- Cost factor = 1*
- Insertion factor = 1^{*}

*Relative to FR4

GETEK

Project Background

Test Board

Description

Materials

Review

Data

Review

Materials

Traces

System

Conclusions

- Material properties
 - Polyphenylene oxide/epoxy composition
 - ML200 laminate & prepreg
 - Fabrication requires minor modifications
 - Several thicknesses available
- Electrical properties
 - $-\epsilon_r = 3.9$ - tan $\delta = 0.012$
 - -1010=0.012
- Cost factor = 1.1^{*}
- Insertion factor = 1.6^{*}

*Relative to FR4

9

ROGERS 4350

Project Background

Test Board

Description

Materials

Review

Data

Review

Materials

Traces

System

Conclusions

- Material properties
 - Glass-reinforced ceramic thermoset
 - ROGERS 4350 laminate & 4320 prepreg
 - Fabrication requires minor modifications
 - Several thicknesses available
- Electrical properties - ε_r=3.5
 - $\tan \delta = 0.004$
- Cost factor = 2.1^*
- Insertion factor = 1.9^{*}

*Relative to FR4

10

ARLON CLTE

Project Background

Test Board

Description

Materials

Review

Data

Review

Materials

Traces

System

Conclusions

- Material properties
 - Glass-reinforced ceramic/PTFE composite
 - ARLON CLTE laminate & prepreg
 - Fabrication requires special processes
 - Limited thicknesses available
- Electrical properties
 - $-\varepsilon_r = 2.9$
 - $\tan \delta = 0.0025$
- Cost factor = 6.8^*
- Insertion factor = 2.2^{*}

*Relative to FR4

Time-domain Testing

- Typical for signal integrity analysis
- Tests performed
 - Bit sequence eye patterns to 3 Gbps
 - Clock bit patterns to 3 GHz
- Equipment

Project Background

Test Board Description

Materials Review

Data

Review

Materials

Traces

System

Conclusions

- HP 8133A bit generator
- Tektronix 11801C digitizing oscilloscope
- Conclusions
 - Material information not easily extractable
 - Test equipment speed limitations

Frequency-domain Testing

- Information more fundamental
 - Proven techniques to extract material
 - information

Project

Background

Test Board

Description

Materials

Review

Data Review

Materials

Traces

System

Conclusions

- Building block to extract trace and system information
- Less bandwidth limitations
- Two port S-parameters to 6 GHz
- Equipment
 - HP 8753D network analyzer
 - HP 85033D calibration kit

Measured Frequency Data

De-embedding Techniques

Project Background Test Board Description Materials Review Data Review Materials Traces System Conclusions

- Removes effects introduced by test fixtures
- AMP used the Through-Reflect-Line (TRL) method
- Trace data can be used to derive material properties
 - Effective dielectric constant (ε_r)
 - Loss tangent (tan δ)
 - Conductor loss factor (α_c)
 - Impedance(Z_o) and propagation velocity

De-embedded Frequency Data

S₂₁ for 12" trace with test point effects removed (S₁₁ becomes negligible)

Materials Comparison

• Dielectric constant (ε_r) vs. frequency

Materials Comparison

Project Background

Test Board

Description

Materials

Review

Data

Review

Materials

Traces

System

Conclusions

Loss tangent (tan δ) vs. frequency

PWB Stripline Performance

From measured data

Project Background

Test Board

Description

Materials Review

Data Review

- Frequency domain
- Test points de-embedded
- Multiple trace widths
- Multiple trace lengths

Design Gains Due to Materials

Trace width

Project Background

Test Board

Description

Materials

Review

Data

Review

Materials

Traces

System

Conclusions

- 5 mil ROGERS 4350 trace performance equates to that of 12 mil FR4 trace
- Higher system trace densities can be achieved using alternate materials
- Trace length
 - 24" ARLON CLTE trace performance equates to that of 12" FR4 trace
 - Increased system lengths improve design flexibility

Generating Trace Eye Patterns

- Frequency data used to generate timedomain response without test points
- Higher frequency S-parameters enable higher speed time-domain results

Trace Eye Patterns (4.8 Gbps, 36")

<u>FR4:</u> Jitter = 0.23 UI Opening = 289 mV

<u>GETEK:</u> Jitter = 0.21 UI Opening = 336 mV

ROGERS 4350: Jitter = 0.11 UI Opening = 532 mV

<u>ARLON CLTE:</u> Jitter = 0.10 UI Opening = 614 mV

-The output waveforms shown result from a 1-volt, 32-bit inverting K28.5 input bit pattern (4.8 Gbps, 60ps edges) that is applied to a 12 mil, 50 Ohm stripline trace that is 36" long.

AMP Circuits & Design

22

Trace Eye Patterns (9.6 Gbps, 18")

<u>FR4:</u> Jitter = 0.30 UI Opening = 238 mV

<u>GETEK:</u> Jitter = 0.28 UI Opening = 268 mV

ROGERS 4350: Jitter = 0.20 UI Opening = 426 mV

<u>ARLON CLTE:</u> Jitter = 0.19 UI Opening = 520 mV

-The output waveforms shown result from a 1-volt, 32-bit inverting K28.5 input bit pattern (9.6 Gbps, 60ps edges) that is applied to a 12 mil, 50 Ohm stripline trace that is 18" long.

23

The Interconnect Path

- System analysis must consider the entire interconnect
- Connector and through-hole impact – Impedance mismatches (ringing)
 - Resonance due to structure lengths
 - Mode coupling and crosstalk

Circuits & Design 24

Measured System Eye Pattern

• FR4 System: 12 mil, 18" trace at 3 Gbps

Project

Simulated System Eye Pattern

• FR4 System: 12 mil, 18" trace at 3 Gbps

Project

System Eye Patterns (2.4 Gbps, 18")

System Eye Patterns (4.8 Gbps, 18")

 $\frac{FR4:}{Jitter} = 0.25 \text{ UI}$ Opening = 218 mV

<u>GETEK:</u> Jitter = 0.24 UI Opening = 227 mV

ROGERS 4350: Jitter = 0.19 UI Opening = 378 mV

ARLON CLTE: Jitter = 0.12 UI Opening = 516 mV

-The output waveforms shown result from a 1-volt, 32-bit inverting K28.5 input bit pattern (4.8 Gbps, 60ps edges) that is applied to a system with two throughholes, two AMP HS3 connectors, and a 12 mil, 50 Ohm stripline trace that is ~18" long.

System Eye Patterns (9.6 Gbps, 18")

Trace Eye Patterns (9.6 Gbps, 18")

<u>FR4:</u> Jitter = 0.30 UI Opening = 238 mV

<u>GETEK:</u> Jitter = 0.28 UI Opening = 268 mV

ROGERS 4350: Jitter = 0.20 UI Opening = 426 mV

<u>ARLON CLTE:</u> Jitter = 0.19 UI Opening = 520 mV

-The output waveforms shown result from a 1-volt, 32-bit inverting K28.5 input bit pattern (9.6 Gbps, 60ps edges) that is applied to a 12 mil, 50 Ohm stripline trace that is 18" long.

AMP Circuits & Design

30

Interconnect System Summary

Project Background Test Board Description **Materials** Review Data Review Materials Traces System Conclusions

Interconnection assumptions:

- -50Ω stripline trace (12 mils, 18")
- 2 HS3 connectors and minimal vias
- Results summary:
 - @ 2.4 Gbps performance in all materials should be acceptable
 - @ 4.8 Gbps
 - System analysis required
 - Alternate materials could make the difference
 - @ 9.6 Gbps
 - Alternate interconnect technology required
 - Improved materials required
 - System analysis critical

Conclusions

Materials

Project Background

Test Board

Description

Materials Review

Data Review

Materials

Traces

System

Conclusions

Alternate dielectric materials exist that are manufacturable, cost-effective, and superior in electrical performance.

• PWB structures (traces)

- PWB structures can support substantial future bandwidth requirements using improved dielectric materials.
- Interconnection systems
 - Future bandwidth trends require improved interconnection technology and in depth system analysis.

Future Investigations

Measurements

Project

Background

Test Board

Description

Materials Review

Data

Review

Materials

Traces

System

Conclusions

- Time-domain testing to 12 Gbps
- Frequency-domain testing to 50 GHz
- Further compliant pin force testing
- Technology research
 - Via studies
 - Next generation connector development
 - Advanced modeling techniques

Recommended Resources

Project Background

Test Board

Description

Data Review

Materials

Traces

System

Conclusions

Materials Review

- For further information, contact:
 - AMP simulation services simulation@amp.com
 - AMP modeling services <u>modeling@amp.com</u>
- Presentation information and additional paper copies can be obtained from:

Chad Morgan (717) 986-3342 <u>chad.morgan@tycoelectronics.com</u>