Multilevel Modulation for 10GbE: Link and Component Specification Issues

David Cunningham

Hewlett-Packard Laboratories, Bristol, UK.

dgc@hpl.hp.com

Conceptual Optical Power Budget

Multilevel Optical Link Issues

- Multilevel Power Penalty
- Relative Intensity Noise (RIN) Penalty
- Laser Linearity (Compression Ratio) Penalty
- ISI Penalty
- Cabled Fiber Attenuation
- Modal Noise
- Connection Insertion Loss
- Return Loss
- Minimum Received Eye Opening
- Mode Partition Noise (MPN)
- Jitter
- Coding Gain

Example Two Cell T-Waves

High Bandwidth T-Wave (2,2)

High Bandwidth T-Wave (4,4)

T-Wave Pulse Spectra

High Bandwidth T-Wave (4,4) Pulse Spectra

+++ Low Bandwidth T-Wave

---- Common T-Wave

— High Bandwidth T-Wave

T-Wave Code Spectra

T-Wave and PAM Eye Diagrams

High Bandwidth T-Wave (2,2) and PAM4

Bandwidth Efficiency Plane Graphs

Multilevel Optical Power Penalty For Multilevel Modulation

Note: Constant Symbol Rate Assumed

Optical Power Penalty Versus Relative Intensity Noise (RIN)

Typical 1300nm Fabry Perot Laser (Device A)

Typical 1300nm Fabry Perot Laser (Device B)

Linear Response

Non-linear Response

Linear Eye Diagram

Non-linear Eye Diagram

Power Penalty Relative to NRZ Due to Non-Linear Response

Non-Equalized Worst Case Link Length Versus Number of Levels (Gigabit Ethernet ISI Model)

Modal Noise Optical Power Penalty

- The modal noise power penalty for multilevel systems requires careful theoretical and experimental investigation.
- For the same connector specifications, as an NRZ link, the worst case modal noise variance will remain constant. But in a power limited, multilevel system, the optical signal will decrease due to the multilevel power penalty.
- Therefore, modal noise power penalties are likely to be much larger compared to those of GbE and error rate floors may be encountered.

Coding Gain and Link Specifications

- Multilevel optical links suffer increased or new penalties compared to NRZ optical links:
 - New Multilevel Power Penalty
 - Increased RIN Penalty
 - New Non-Linearity Penalty
 - Restricted ISI Penalty Range
 - Increased Modal Noise Penalty
 - Increased Return Loss Requirements
- Codes that provide coding gain will be essential but coding gain cannot correct for all of the increased component/link penalties.

10GbE Architecture Versus Electrical SNR

Architecture	Relative Electrica SNR, dB	I Comment
GbE	0	
4 WDM + 8B10B	- 4	
PAM5	< - 18	Error Rate Floor?
PAM5 + EVEN	< - 15	Error Rate Floor?
PAM5 + Trellis	< -12	Error Rate Floor?

Note: Allocated a minimum penalty of 6 dB electrical for combined effect of RIN, MN, NLD penalties. Assumed coding gain of 3dB electrical for PAM5 + EVEN and 6 dB for PAM5 + Trellis.

Conclusions

- Multilevel component specifications will not be the same as for NRZ based links at the same symbol rate - they will be much more restrictive
- Many very challenging technical issues need to be addressed

