Impact of the x⁴³ + 1 Scrambler on the Error Detection Capabilities of the Ethernet CRC

IEEE 802.3 HSSG Meeting, Montreal July 5-9, 1999

Norival Figueira Nortel Networks nfigueir@nortelnetworks.com

Agenda

- Scrambled encoding
- Error multiplication in self-synchronous scramblers
 - $x^{43} + 1$ scrambler duplicates bit errors
- Overall error detection capabilities of Ethernet CRC are not reduced
 - Given a random error, the probability of undetected errors is the same whether there is an $x^{43} + 1$ scrambler or not

A Scrambler PCS Layer

10 Gigabit Ethernet Reference Model

Scrambler Proposal

- Two polynomial scrambler system
 - $x^7 + x^6 + 1$ over all data
 - x^{43} + 1 from MAC DA through MAC CRC
- Perform frame delimiting using <length> <type><hcs> pointer chains
- $x^7 + x^6 + 1$ is periodically resynchronized
- x^{43} + 1 self synchronizing

x⁴³ + 1 Scrambler/Descrambler

Error Duplication

- Bit errors are delayed in the 43-bit shift register and appear again 43 bits later
- Every bit error duplicates itself 43 bits later

Messages and Polynomials

 An *n*-bit message can be represented as an *n* - 1 degree polynomial, where each bit is the coefficient for each term in the polynomial

- 10011011 corresponds to the polynomial $M(x) = x^7 + x^4 + x^3 + x^1 + 1$

- Multiplication, division, and addition of polynomials are performed *module 2*
 - Module 2 addition is the same as subtraction = XOR of bit patterns

110101101

Ethernet CRC

- $G(x) = x^{32} + x^{26} + x^{23} + x^{22} + x^{16} + x^{12} + x^{11} + x^{10} + x^8 + x^7 + x^5 + x^4 + x^2 + x + 1$
- FCS = remainder of $M(x)x^{32} / G(x)$ - $M(x)x^{32} = M(x)$ followed by 32 zeroes
- Transmitted message: $T(x) = M(x)x^{32} + FCS$

— Remainder of T(x) / G(x) is zero

Received Message

• R(x) = T(x) + E(x)

How a CRC Code Detects Errors

- R(x) = T(x) + E(x)
- Received message R(x) is <u>assumed</u> correct if R(x) is divisible by G(x)

— i.e., remainder of R(x) / G(x) = 000...0

• Remainder of R(x) / G(x) = remainder of E(x) / G(x)

- Since remainder of T(x) / G(x) = 000...0

• Error is detectable if remainder of $E(x) / G(x) \neq 000...0$

— Some error patterns are undetectable (e.g., E(x) = G(x))

Position of Bit Errors is not Important

- Error detection capability does not change if E(x) is shifted to the right or left without loosing bit errors
 - If E(x) is detectable, $E(x)/x^{j}$ and $E(x)x^{j}$ are detectable
 - Multiplying or dividing E(x) by x^{i} does not make it a multiple of G(x)
 - Multiples of G(x) have all the factors of G(x), and x^{j} has none

• Definition:

- F(x) is a factor of G(x) if G(x) is divisible by F(x) and F(x) is only divisible by itself and 1

Ethernet CRC Detects

• All single-bit errors

— Since G(x) has the terms x^{32} and 1

• All double-bit errors

— Since G(x) has a factor with at least three terms

— (also verified by enumeration of all possible cases)

• All triple-bit errors

— verified by enumeration of all possible cases (up to 1518 bytes)

• All burst errors with length up to 32 bits

— In this case, remainder of $E(x) / G(x) \neq 000...0$

Ethernet CRC Detects (cont.)

- All 33-bit burst errors except $E(x) = G(x)x^{j}$
 - There are 2³¹ possible 33-bit burst errors
 - If error patterns are random, G(x) can detect 99.99999953%
 of all 33-bit burst errors
- Ethernet CRC does <u>not</u> detect all <u>odd</u> number of bit errors
 - $E(x) = G(x)x^{j}$ is undetectable and has 15 bits in error!
 - If G(x) had (x + 1) as a factor, it would detect all odd number of bit errors
 - (x + 1) not being a factor of the Ethernet CRC is actually good, as we will show later

References

- Stallings, W., "Data and Computer Communications," 3rd Edition, Macmillan Publishing Company, c1991, pp. 127-132
 - Overview of CRC codes and their general properties
 - Brief proofs for some properties and references to primary sources for other proofs
- Tanenbaum, A. S., "Computer Networks," Prentice Hall, 1996, pp. 128-132

— Same

Error Duplication

- Errors are duplicated by the x⁴³ + 1 scrambler
- The error seen at the frame is D(x) = E(x) + E'(x)

Error Duplication (cont.)

- D(x) can be expressed as
 - $D(x) = E'(x)(x^{43} + 1)$
 - example:
 - E(x) = 1010...0000, where E(x) ends with 43 zeros
 - E'(x) = 0000...0101
 - D(x) = 1010...0101

Ethernet CRC is Immune to Error Duplication

- Ethernet CRC detects a duplicated error if
 D(x) = E'(x)(x⁴³ + 1) is not a multiple by G(x)
- But $(x^{43} + 1)$ has no <u>factors</u> in common with G(x)

 $(x^{43} + 1)$ factors: (11) (10011111111001) (101010010010101) (110100010001011)

— Ethernet CRC factor: itself \Rightarrow (*x* + 1) is not a factor!

 Conclusion: D(x) is divisible by G(x) if and only if E'(x) and, consequently, E(x) are divisible by G(x)

- i.e., There is no change in error detection capabilities

A Few Boundary Cases

 Previous analysis assumes that E(x) and E'(x) are entirely contained inside the frame

Errors/Duplications May Cross Frame Boundaries

- E(x) or E'(x) can be partially outside the frame
- Is the resulting error detectable?

Errors Crossing the Beginning of the Frame

• Let E(x) = J(x) + K(x)

- J(x) is the part of E(x) that is originally outside the frame

- J'(x) and K'(x) are the duplicates of J(x) and K(x), respectively
- Error seen at the frame: $K'(x)(x^{43} + 1) + J'(x)$

Probability of Undetected Errors = 2.3 \times 10^{-10}

(Errors Crossing the Beginning of the Frame)

• Case 1: J'(x) and K'(x) are undetectable

— Probability of D(x) being undetectable = $(1 / 2^{32}) (1 / 2^{32})$

• Case 2: J'(x) is detectable and K'(x) is undetectable

— Probability of D(x) being undetectable = 0

• Case 3: J'(x) is undetectable and K'(x) is detectable

— Probability of D(x) being undetectable = 0

• Case 4: J'(x) and K'(x) are detectable

— Probability of D(x) being undetectable is equal to the probability of K'(x) being detectable and K'(x)($x^{43} + 1$) having the same remainder as J'(x). It is then $(1 - 1 / 2^{32})(1 / 2^{32})$

• Probability of undetected errors = $1/2^{32} = 2.3 \times 10^{-10}$

Probability of Undetected Errors is the Same

(Errors Crossing the Beginning of the Frame)

• For errors crossing the beginning of the frame, the probability of undetected errors is <u>exactly</u> the same as the one without the scrambler, i.e., $1 / 2^{32} = 2.3 \times 10^{-10}$

All Errors ≤ 29 Bits Long are Detectable

(Errors Crossing the Beginning of the Frame)

• List of all undetectable errors

- (Left of "-" is outside the frame)
- (30 bits) 1011 0 1111100100001101110111001 (2 cases)
- (31 bits) 1000110100111110011111 100111001
- (31 bits) 1 10110110100000001001000000101
- (31 bits) 11101 10000101100010110010101
- (32 bits) 1010000101110111011 0 101000101001 (2 cases)
- (32 bits) 10111010101110101110011 0 0 111 (3 cases)

- (32 bits) 110000010011101 - 1111000110110111

 For errors ≤ 32 bits long, the probability of undetected errors is increased (from 0) to 8.4 × 10⁻¹¹

 $-2/(29 \times 2^{32}) + 3/(30 \times 2^{32}) + 6/(31 \times 2^{32}) = 0.36/2^{32} = 8.4 \times 10^{-11}$

Duplication Partially Outside the Frame

- Let E(x) = J(x) + K(x)
- J'(x) and K'(x) are the duplicates of J(x) and K(x), respectively

— K'(x) is the part of E'(x) that is outside the frame

• Error seen at the frame: $J'(x)(x^{43} + 1) + K(x)$

Probability of Undetected Errors = 2.3 \times 10^{-10} (Duplication Partially Outside the Frame)

• Case 1: J'(x) and K(x) are undetectable

— Probability of D(x) being undetectable = $(1 / 2^{32}) (1 / 2^{32})$

• Case 2: J'(x) is undetectable and K(x) is detectable

— Probability of D(x) being undetectable = 0

• Case 3: J'(x) is detectable and K(x) is undetectable

— Probability of D(x) being undetectable = 0

• Case 4: J'(x) and K(x) are detectable

— Probability of D(x) being undetectable is equal to the probability of J'(x) being detectable and J'(x)($x^{43} + 1$) having the same remainder as K(x). It is then $(1 - 1 / 2^{32})(1 / 2^{32})$

• Probability of undetected errors = $1/2^{32} = 2.3 \times 10^{-10}$

Probability of Undetected Errors is the Same

(Duplication Partially Outside the Frame)

• For errors whose duplications cross the end of the frame, the probability of undetected errors is <u>exactly</u> the same as the one without the scrambler, i.e., $1 / 2^{32} = 2.3 \times 10^{-10}$

All Errors ≤ 29 Bits Long are Detectable

(Duplication Partially Outside the Frame)

• List of all undetectable errors

- (Right of "-" is duplicated outside the frame)
- (30 bits) 110111 100110110010100111110011
- (32 bits) 1110101001 11011001010000000001
- (32 bits) 1001 110111110001000001011010001
- (32 bits) 1 0 101000011001011001001100000111 (2 cases)
- (32 bits) 11010110011001100000100111 100111
- For errors ≤ 32 bits long, the probability of undetected errors is increased (from 0) to 4.6 × 10⁻¹¹
 1/(29×2³²) + 5/(31×2³²) = 0.196/2³² = 4.6×10⁻¹¹

Errors and Duplications at Frame Boundaries

- Let E(x) = J(x) + K(x) + L(x)
- J'(x), K'(x), and L'(x) are the duplicates of J(x), K(x), and L(x), respectively
 - L'(x) is the part of E'(x) that is outside the frame
 - J(x) is the part of E(x) that is outside the frame
- Error seen: $D(x) = K'(x)(x^{43} + 1) + J'(x) + L(x)$

Probability of Undetected Errors = 2.3 \times 10^{-10}

(Errors and Duplications Extending Across Frame Boundaries)

• Case 1: L(x) is undetectable

- Probability of D(x) being undetectable = $(1 / 2^{32}) (1 / 2^{32})$
 - = probability of $K'(x)(x^{43} + 1) + J'(x)$ and L(x) being undetectable (the former is derivable from the first boundary case)

• Case 2: L(x) is detectable

- Probability of D(x) being undetectable = $(1 - 1 / 2^{32}) (1 / 2^{32})$ = probability of K'(x)(x⁴³ + 1) + J'(x) being detectable and K'(x)(x⁴³ + 1) + J'(x) having the same remainder as L(x) (the former is derivable from the first boundary case)

• Probability of undetected errors = $1/2^{32} = 2.3 \times 10^{-10}$

Probability of Undetected Errors is the Same

(Errors and Duplications Extending Across Frame Boundaries)

• When error and duplication cross frame boundaries, the probability of undetected errors is <u>exactly</u> the same as the one without the scrambler, i.e., $1/2^{32} = 2.3 \times 10^{-10}$

— Note: Errors \leq 32 bits long are not applicable in this case (frames are not that short)

Summary of Cases

Base case

NØRTEL

JFTWORKS"

 Error detection capabilities of the Ethernet CRC are unchanged

Boundary Cases

- Probability of undetected errors is the same as the one without the scrambler, i.e., $1 / 2^{32} = 2.3 \times 10^{-10}$

Probability of Undetected Errors

Case Type	E(<i>x</i>) frame position	E'(<i>x</i>) frame position	1-bit error	2-bit error	Bursts ≤ 29 bits	Bursts ≤ 32 bits	Bursts > 32 bits
Without scrambler	inside	N/A	0	0	0	0	2.3 × 10 ^{−10}
Base	inside	inside	0	0	0	0	2.3 × 10 ⁻¹⁰
Boundary	across beginning	inside	0	0	0	8.4 × 10 ⁻¹¹	2.3 × 10 ^{−10}
Boundary	inside	across end	0	0	0	4.6 × 10 ⁻¹¹	2.3 × 10 ⁻¹⁰
Boundary	across beginning	across end	0	0	0	0	2.3 × 10 ⁻¹⁰

Summary

- The x⁴³ + 1 scrambler does <u>not</u> change the overall probability of undetected errors of the Ethernet CRC
 - For errors entirely contained inside the frame, error duplication does not affect the error detection capabilities of the Ethernet CRC
 - For random errors, the overall probability of undetected errors is the same whether there is an x^{43} + 1 scrambler or not
 - For errors or duplications that are not entirely contained inside the frame, the probability of undetected errors is the same as the one without the scrambler, i.e., $1 / 2^{32} = 2.3 \times 10^{-10}$

— All errors 29 bits long or less are detectable

