10G-BASE-T

Jaime E. Kardontchik Stefan Wurster Carlos Laber

Montreal - July 1999

email: kardontchik.jaime@microlinear.com

Acknowledgment

My thanks to David Cunningham, from Hewlett Packard, for pointing at the original mix-up between optical and electrical SNR in the Idaho presentation.

10G-BASE-T ARCHITECTURE

PAM-5

 $\{-2,-1,0,+1,+2\}$

1.25 Gbps

10G-BASE-T architecture

[≫]It uses the 1000BASE-T PCS + 4-WDM

- The idea behind this architecture is to get the most out of the installed fiber, which is bandwidth limited.
- It uses a baud rate of 1.25 Gbaud/sec, i.e., the same baud rate used in 1 GbE.

PCS main features

The PCS (Physical Coding Sublayer) consists of 3 elements

- scrambling
- PAM-5 encoding
- coding gain (FEC, Forward Error Correction)

PCS additional features

- It uses PAM-3 {-2,0,+2} IDLE encoding during start-up to make it more robust (also between frames)
- The encoding is such that the receiver PCS can detect differential skew delays and align the 4D symbols correctly.
- The encoding is such that the local receiver knows the status of the remote receiver (OK or NOK)

Static and Dynamic Views

Static view

Update on SNR calculations (ignoring dispersion effects in the fiber and laser risetime)

Receiver Front End

Assume PIN Photo Diode + Trans-Impedance Amplifier

Electrical SNR = $10 * \log (Iph^2 / Ith^2)$

Efficient use of bandwidth

Electrical SNR comparison Table

1000BASE-X (reference)	0 dB
8b/10b + 4-WDM	- 4 dB (noise penalty)
PAM-5 + 4-WDM	- 12 dB (signal penalty)
PAM-5 + EVEN Coding	- 10 dB (2.2 dB coding gain,*)
PAM-5 + Trellis Coding	- 7 dB (5.2 dB coding gain,*)
(*) comment by Sailesh Rao	

Dynamic View - Longer Links ISI Limited Link Length (*)

Fiber bandwidth	500 MHz * km	
Laser risetime	260 ps 130 ps	
8b/10b @ 3.125 GHz	280 m 320 m (a	a)
PAM-5 @ 1.25 GHz	330 m 480 m (b)

(*) See David Cunningham's presentation, Montreal 99, slide "Non-Equalized Worst Case Link Length versus number of levels"

(a) 700*(1.25/3.125) = 280m; 800*(1.25/3.125) = 320m;

(b) not including coding gain (FEC)

Other advantages

- Reuse of the PCS of 1000BASE-T.
 - There is no need to change/add anything to the existing (standardized) 1000BASE-T PCS. It fits perfectly with 4-WDM.
 - Only approach that offers a complete, finished, PCS solution. Saves development time.

... and more advantages

Electrical Transceivers in CMOS

- It is compatible with CMOS technology (lowest clock, 1.25 GHz)
- Possibility to integrate the MAC with the PHY, eliminating the need to implement the high-speed parallel I/O 10G-MII interface.

What do we loose ?

➤ OOK signaling

- Multilevel direct modulation of lasers was seldom used in the past.
- A lot of work must be done here, specially in the area of a tighter control of the linearity of the Light vs Current (L-I) characteristics:
 - thermoelectric cooling ? (very cost effective here)
 - Nonlinear I vs Level CDAC driver ? (to get an overall linear Light vs Level characteristics)

