WWDM Transceiver Update and 1310 nm eye-safety

Brian E. Lemoff and Lisa A. Buckman

Hewlett-Packard Laboratories lemoff@hpl.hp.com

IEEE 802.3 HSSG Meeting

Montreal, Quebec July 5-9, 1999

Overview

- I. Review of HP WWDM Proposal
- **II.** Demultiplexer results
- III. Crosstalk results
- **IV. Multimode link results**
- V. 1310nm eye-safety

HP WWDM Proposal

- **Data** 4 duplex channels, 2.5 Gb/s/channel
- **<u>Fiber</u>** Dual use SMF/MMF (SM TX, MM RX)
- Package MTRJ duplex connector, BGA surface mount
- **Sources** Uncooled, unisolated DFB, *No SMSR spec*
- <u>Wvlngth</u> 1280,1300,1320,1340 nm
- MUX 4-to-1 silica waveguide combiner
- **Detectors** InGaAs PIN photodiode array
- **DEMUX** Compact molded plastic "bulk zigzag"
- **ICs** 4-channel TX; 4-channel RX (integrated)

Assembled WWDM MTRJ Module

Wavelength Demultiplexer

Three views of ray tracing in wavelength demultiplexer

Wavelength Demultiplexer

Demultiplexer Transmission Spectrum

First results using home-grown interference filters

4-channel Transmitter IC

TX Interchannel Crosstalk Performance

Measured with external RX; 2.488 Gb/s 27-1 PRBS

Single TX channel on, others off

All 4 channels on

BER curves show no power penalty for single channel vs. four channels on TX.

-TX Interchannel Crosstalk at 3.125 Gbaud

One channel on, three off 3.125 Gb/s PRBS extinction 8.4 dB

All four channels on 3.125 Gb/s PRBS extinction 9.0 dB

12-Channel RX IC - Using 4 channels

Soon-to-be available 4-channel IC will greatly reduce RX footprint

TX-to-RX Crosstalk at 2.488 Gb/s

No power penalty is observed in RX due to 4-channel TX data

SpectraLAN-LX Link Results: 300 m MMF

1340 nm

1320 nm

1300 nm

1280 nm

2.488 Gbaud/channel 2^7-1 PRBS Multimode Polymer Mux Injection-molded demux Total launch power: -2 dBm

Class 1 Eye Safety

At 1310nm, in SMF, FDA/CDRH is more restrictive than IEC

FDA Center for Devices and Radiological Health 21 CFR Ch1 (4-1-98 Edition), sec. 1040.10 guidelines specify that for Class 1:

No more than 0.195 mW of average power may pass through an aperture 7 mm in diameter at a distance of 20 cm from the end of the fiber.

Class 1 Eye Safety - (cont'd)

According to Corning spec., SMF mode field diameter is between 8.8 μ m and 9.8 μ m. Thus use 9.8 μ m as worst case (i.e. lowest NA). Assume gaussian beam.

Waist (1/e² intensity radius) = 4.9 μ m at fiber tip.

At 20 cm, we have:

$$w(z) = \frac{\lambda z}{\pi w_0} = \frac{(1310 \text{ nm})(20 \text{ cm})}{(3.1416)(4.9 \,\mu\text{m})} = 17 \text{ mm}$$

$$I(r) = \frac{2P}{\pi w^2} \exp\left(\frac{-2r^2}{w^2}\right) \propto \exp\left(-0.0069 \ r^2\right)$$

Class 1 Eye Safety - (cont'd)

The fraction of power passing through a 7mm aperture is:

$$\eta = \frac{2}{\pi w^2} \int_0^a 2\pi r \exp\left(\frac{-2r^2}{w^2}\right) dr = 1 - \exp\left(\frac{-2a^2}{w^2}\right)$$
$$\eta = 1 - \exp\left(\frac{-2(3.5 \text{ mm})^2}{(17 \text{ mm})^2}\right) = 0.081$$

Thus, allowed Class 1 fiber power, is

$$P = \frac{0.195 \text{ mW}}{0.081} = 2.41 \text{ mW} = +3.8 \text{ dBm}$$

(Note: For 8.8 μ m mode field diameter, P = +4.7 dBm.)

Why is there confusion?

A limit of +2dBm is often cited

Lucent Technical Note: "Laser Safety and Optical Fiber Communications Systems", March 1999 computes a +2dBm Class 1 eye-safety limit.

The authors followed the identical calculation, but took "Mode Field Diameter" to mean 1/e intensity, rather than $1/e^2$ intensity, as it is normally defined. They also assumed 8.8µm as MFD.

Question: What is largest MFD allowed and how accurate is the gaussian model in predicting eye-safety?

Thanks to Richard Booman and Scott Lowrey of Network Elements for bringing this Lucent Technical Note to my attention.

Eye Safety and WWDM

Power Budget should allow 4-channel eye-safe operation

Eye-safe limit at 1300 nm:	+3.8 dBm
Limit per channel:	-2.2 dBm
Demultiplexer loss:	<6 dB (worst case)
Link Budget:	<8 dB (expected)

:. Required receiver sensitivity <-16.2 dBm

Several dB of margin remains with existing Si IC technology.

Next generation IC's will have even more margin.

