10 GbE CX - Short Haul Copper -

IEEE 802.3 HSSG copper ad hoc - Montreal, PQ

Rich Taborek - Transcendata, Inc. Ed Cady - FCI-Berg

	I			
	IFFF 802.3			
Rich Taborek, Transcendata, Inc.	HSSG			
Ed Cady, FCI-Berg	Copper ad hoc	Rev 1.0	Slide 1	July 6. 1999

General Direction

* Link should be significantly cheaper than optical at max distance

► Link includes 2 transceivers and a jumper cable

Distance goal: 10 meters minimum

- Leverage 1000BASE-CX PMD spec (Clause 39)
- Leverage PAM5 PHY proposed for SX, LX, EX for 10 GbE
 Enables the use of low cost technologies: CMOS, twin-ax jumper cable
- Simple Single Channel controls cost/complexity

Eliminates link skew issues, reduces logic, lowest cable cost/bulk

- Coding techniques offset PAM SNR loss, provide transition density, synchronization, special codes
- Introduce Auto-Negotiation for speed

IEEE 802.3Rich Taborek, Transcendata, Inc.IEEE 802.3Ed Cady, FCI-BergCopper ad hocRev 1.0Slide 2July 6. 1999

Jumper Cable Assembly

- Consists of a continuous shielded balanced cable (twinax) terminated at each end with a polarized shielded plug.
- * 2.2 GBaud FC, 2.5 GBaud NGIO CX (same) cable available
 - Production cables available from multiple sources
 - Performance verified to 10 m without equalization
 - ▶ Performance verified to 20 m with passive equalization
- * 10 Gbps PAM5 = 5 Gbaud = $2 \times$ existing cable performance
 - Connector Technology
 - Ongoing work: Existing connector technology modeled to 5 GBaud
 - Measuring now to determine limits
 - ➤ Cable Technology
 - Modeled successfully: 10 m, 22 awg, no equalization @ 5 GBaud
 - Measuring now to determine limits

Rich Taborek, Transcendata, Inc.

Ed Cady, FCI-Berg

IEEE 802.3 HSSG Copper ad hoc

Rev 1.0	Slide 3	July 6. 1999	

PAM5 CX Transceiver

- Hot-Pluggable
- Common transceiver interface for CX, SX, LX, EX variants
 - Supports all 10 GbE early proposals
 - PAM5, Serial TDM, Parallel Optics, WWDM, combos, others?
 - Quad Serial interface per Frazier/Quackenbush Montreal proposal
 - Needed to support significant distance to MAC/PCS
 - Suggest staying with 8B/10B coding on this interface

IEEE 802.3 HSSG Copper ad hoc

PAM5 CX Transceiver System

Auto-Negotiation

- * New for CX
- Same as proposal presented in Coeur d'Alene for optics
- PAM5 is the <u>ONLY</u> 10 GbE PHY proposal capable of running at both 1 GbE and 10 GbE
- Provides functional parity with Ethernet UTP variants
- Enables early sales, simpler migration strategy
- Link Calibration establishes 'perfect' Tx/Rx levels
 - > Optimizes link SNR/BER, Potential distance extension

Rich Taborek, Transcendata, Inc.	HSSG			
Ed Cady, FCI-Berg	Copper ad hoc	Rev 1.0	Slide 6	July 6. 1999