Optical PMD Proposals for 10GbE

Edward Cornejo Coeur d'Alene, Idaho June, 1999 Interim Meeting 610-391-2116

Lucent Technologies Bell Labs Innovations

Outline

- 10 Gigabit Market Segments
- Updated Serial SMF Proposals
- Update on T1X1.5 efforts
- A Quick View of Current Proposals
- Conclusions

10Gb/s Market Segmentation

Current GbE Structure

Proposed 10GbE Structure

Preliminary 2km Specifications

Fabry-Perot (MLM) 1310n	m		
	Min	Max	Units
Transmitter			
Signaling Speed		11.25	GBd
Average Power	-5	0	dBm
Wavelength	1290	1330	nm
RMS Spectral Width		2.5	nm
Extinction Ratio	7		dB
10%-90% Rise/ Fall Time		35	psec
Relative Intensity Noise		-125	dB/Hz
Receiver			
Signaling Speed		11.25	GBd
Wavelength	1290	1330	nm
Average Receive Power		0	dBm
Receiver Sensitivity	-14		dBm
Return Loss			

Calculations based on standard single mode fiber and unisolated uncooled laser

Preliminary 15km Specifications

Distributed Feedback (SLM) 1310nm				
	Min	Max	Units	
Transmitter				
Signaling Speed		11.25	GBd	
Average Power	-5	0	dBm	
Wavelength	1295	1323	nm	
RMS Spectral Width		0.5	nm	
Side Mode Supression	30		dB	
Extinction Ratio	7		dB	
10%-90% Rise/ Fall Time		35	psec	
Relative Intensity Noise		-145	dB/Hz	
Receiver				
Signaling Speed		11.25	GBd	
Wavelength	1295	1323	nm	
Average Receive Power		0	dBm	
Receiver Sensitivity	-14		dBm	

T1X1.5 Update

Preliminary Parameter Values for OC-192 1km intraoffice interface

Parameter (unit)	Value	
Transmitter	MLM	
Operating wavelength range (nm)	1285-1343	
rms spectral width, σ (nm)	3	
Max transmit power (dBm)	-3	
Min transmit power (dBm)	-8	
Extinction ratio (dB)	7	
Temperature	-5 to 85C	

Physical Layer, GR-1377-CORE Issue 4, March 1998 20km specification

Parameter (unit)	Value
Transmitter	SLM
Operating wavelength range (nm)	1290-1330
SSR min (dB)	30
Spectral width, σ (nm)	1.0
Max transmit power (dBm)	0
Min transmit power (dBm)	-4
Extinction ratio (dB)	8.2
Temperature	-40 to 85C

- The T1X1.5 link distances are calculated using the G.957 model and epsilon model therein. The epsilon model found in Annex A is used to account for mode partition noise in F-Ps, and chirp for DFB sources.
- Future work is required to understand if there is any correlation between the GbE link model MPN figure and the epsilon model.

Optical PMD Options

SERIAL

Advantages

- Lowest complexity for LAN, MAN, and WAN applications
- Potentially lowest cost for std SMF and enhanced MMF
- Shipping in certain market segments and supported by several suppliers

Challenges

- Relaxation of Extinction ratio spec
- Si may not be suitable for 10G operation----> SiGe or GaAs

Analog Multilevel Signaling

Advantages

- Potential to support the embedded base of SMF and MMF
- Lower speeds will allow the use of Si electronics

Challenges

- Requires linear optics
- Non-STD from an optical transceiver vendor perspective

microelectronics group

Optical PMD Option Contd

Parallel

- Advantages
- Exists for short distances <500m on MMF @ 1Gbps/channel
- Has potential for 2x per channel in the future

Challenges

- Ribbon cable
- Limited reach
- WWDM

Advantages

- Good potential solution for existing MMF
- Uses lower speed electronics(Si 2.5Gbps)

Challenges

- Complex manufacturing because of wavelength selection and coupling
- Uses 4 DFB lasers, optical mux/demux, and 4 times the electronics(economics, reliability and mfg. uncertain).

Conclusions

- Serial 10 gigabit has the lowest complexity and potentially the lowest cost for existing single mode fiber and enhanced multimode fiber
- Further investigation is required for link distances achievable with low cost uncooled sources
- Serial 10 gigabit solutions have a better potential for multisourcing

