10Gb/s Physical Layer Options & Coding Issues

John Ewen IBM Corporation 3605 Highway 52 North Rochester, MN 55901

Phone: +1 507 253 0799 Email: jfewen@us.ibm.com

Outline

- ▲ Physical Layer Options
 - Parallel & Serial
- ▲ Laser Safety for Parallel Optics
- ▲ Coding Issues: 8B/10B
 - Characteristics
 - Circuit Implications

Parallel Optics Issues

- Opportunity to reallocate link budget
 - Little or no installed base of ribbon cable
 - specify high-bandwidth fiber
 - relax requirements on Tx and Rx
 - Tx minimum launch power
 - extinction ratio
 - Rx sensitivity
- ▲ Class 1 laser safety
 - total launch power of multiple links constrained by safety limit
 severe link budget constraints
 - implement handshaking to allow reasonable link budget

IEEE 802.3 HSSG June 1999

Laser Safety

- Open Fiber Control (OFC)
 - maximum flexibility in launch power
 - maximum complexity
 - long response times
- ▲ Safety Channel Approach
 - one channel must be inherently Class 1 safe
 - handshaking protocol to enable other links when fiber is connected
 - minimize complexity and impact at system level

IEEE 802.3 HSSG June 1999

- ▲ Designate one channel as the master "safety channel"
- ▲ Safety channel must be Class 1 safe at all times
- ▲ Loss-of-signal (LOS) detected by receiver
 - transmitter disables N-1 channels (no light)
 - safety channel remains active
- ▲ Transmitter enables all channels when LOS is not active
- ▲ Advantages
 - launch power not reduced relative to serial links
 - maintain reasonable link budgets & Class 1 safety
 - minimal delay

IEEE 802.3 HSSG June 1999

Campus Environment: 10Gb/s x 1 Serial

- "OLM"-like partitioning
 - link rate signals remain in the module
 - multi-byte low speed interface
 - options
 - potential to integrate framer & serdes (BiCMOS)
 - integrate framer with adapter logic

IEEE 802.3 HSSG June 1999

IBM

10Gb/s Clock & Data Recovery Circuit

Input Eye Diagram

Regenerated Output Eye Diagram

Recovered Clock

IBM

Block Coding vs. Scrambling

▲ Common Objective: lowest total system cost

LAN Environment

- ▲ Terminal cost dominates
 - highly integrated circuits
 - ASIC technologies
 - coding enables low-cost implementations
 - class 1 laser safety required

WAN Environment

- ▲ Infrastructure cost dominates (distance is paramount)
 - coding efficiency
 - launch power
 - low loss (1550nm)

IEEE 802.3 HSSG June 1999

Coding Terminology

- 📤 Run-Length
 - number of consecutive 1's or 0's (binary symbols)
- ▲ Running Digital Sum (= running Disparity)

$$b_k = \sum A_k \delta(t - kT)$$
 RDS = $\sum A_k$

- ▲ Digital Sum Variation
 - peak-to-peak difference between minimum and maximum running digital sum
 - ullet bounded DSV \Leftrightarrow spectral null at DC
- ▲ Normalized offset
 - RMS average of the running digital sum
 - useful estimate of the low frequency content
- ▲ Comma
 - indicates proper byte boundaries
 - can be used for instantaneous acquisition or verification of character & word boundaries
 - cannot occur in any other bit positions within a character or between characters
- ▲ Special (or control) characters
 - valid transmission character which does not translate into a valid data byte

IEEE 802.3 HSSG June 1999 ibm

Examples

- ▲ 8B/10B
 - Fiber Channel
 - 1000BASE-X
 - P1394
- ▲ 4B/5B
- - HPPI-6400
- ▲ Scrambling
 - SONET / SDH

- Max. run-length= 5
- Digital sum variation= 6
- error detection
- comma or control characters available
- Max. run-length= 11
- Digital sum variation= 13
- some error detection (based on disparity)
- no comma or control characters
- Max. run-length= statistical
- Digital sum variation= statistical
- no error detection
- no comma characters

ibm IEEE 802.3 HSSG June 1999

8B/10B Benefits

- ▲ 256 data values (8 bits) and 12 special characters (e.g. command, Byte Sync) yielding a total of 268 encoded sequences.
- ▲ Maintains DC balance
- ▲ No more than 5 running 0's or 1's.
- ▲ K28.5 ("comma") character is unique regardless of combination of data/phase.
- ▲ Improves data reliability (monitor code violations)
- ▲ Has a simple, fast encoding/decoding scheme.

IEEE 802.3 HSSG June 1999

8B/10B Characteristics

- ▲ 256 data values (8 bits) and 12 special characters (e.g. command, Byte Sync) yielding a total of 268 encoded sequences.
- ▲ The 8 data bits split into 3 + 5 bits. The 3 bit field is encoded into 4 bits, the 5 bit field is encoded into 6 bits totaling 10 encoded bits.
- △ Of the 268 encoded characters, 134 are balanced.
- ▲ Each of the disparity dependent characters has an analog with the opposite sign
- ▲ The sum of the disparity of both versions of an encoded character is always 0.
- ▲ Which of the two versions of the characters sent on the link is dependent on the current value of the running disparity.
- ▲ Maximum error spread is 5.

Circuit Implications (cont.):

- \triangle Long run-lengths \Rightarrow narrow PLL bandwidths
 - larger filter components required
 - may not be able to integrate filter on chip
 - ◆ more board/module real estate
 - more cost
 - increased clock jitter
 - intrinsic phase noise becomes more important
 - susceptibility to power supply noise increases

8B/10B Summary

- ▲ Comma & control characters available
 - byte, word, & frame synchronization
- Error detection (code violations)
 - any odd number of bit errors will cause a code violation
 - many even number of bit errors will also cause code violations
 - code complements CRC
 - error correction option
- ▲ Well controlled frequency spectrum
 - max. run-length of 5, DSV= 6
 - good transition density (min. of 30% in data)
 - minimal baseline wander (easy AC coupling)
- ▲ Coding efficiency
 - 25% overhead (symbol rate)
 - enables low-cost implementations in an ASIC environment

IEEE 802.3 HSSG

June 1999

IBM

Summary

- Multiple PHY options should be defined
 - LAN and WAN requirements are significantly different
- ▲ Parallel optics is a viable option for short distances
- ▲ 10Gb/s serial for building and campus environments (and beyond)
 - good line coding essential for low cost implementations
 - 8B/10B proven in high speed LAN environment

IEEE 802.3 HSSG June 1999