WWDM Transceiver Module for 10-Gb/s Ethernet

Brian E. Lemoff

Hewlett-Packard Laboratories lemoff@hpl.hp.com

IEEE 802.3 HSSG Interim Meeting

Coeur d'Alene, Idaho June 1-3, 1999

Why pursue WWDM for the LAN?

Supports installed bases of MMF (~300m) and SMF (10-20km) with single transceiver.

Lower speeds allow noisier, wider band lasers, slower IC processes, and simpler electrical packaging, reducing cost and adding margin.

Why use Wide Wavelength Spacing?

- No temperature control required over 0-70°C operation Laser wavelength varies by 5.0nm @1300nm
- Much higher laser yield is possible

Large interwafer and intrawafer variations in wavelength allowed

Smaller, simpler demultiplexing optics

Smaller, less collimated beams. Interference filters or gratings.

• Multimode fiber can be supported

Large spatial and angular spread makes fine λ resolution tough.

• No amplifiers \Rightarrow Narrow spacing unnecessary

Entire useful spectrum of fiber can be covered if necessary

Advantages of 1300nm over 850nm

I. Bandwidth-Distance Product

2.5 Gb/s in 62.5-μm MMF: 110 m @850nm 300 m @1300nm

II. Eye Safety

Class 1 with 4-channel WDM: -10 dbm/channel @850nm +2 dbm/channel @1300nm

III. Single Mode Fiber Compatibility

850-nm sources are incompatible with standard SMF

IV. Supply Voltage

Lower bandgap means lower forward voltage on lasers

V. Receiver Sensitivity

Lower photon energy \Rightarrow 1.8-dB higher responsivity (A/W)

HP WWDM Proposal

- **Data** 4 duplex channels, 2.5 Gb/s/channel
- **<u>Fiber</u>** Dual use SMF/MMF (SM TX, MM RX)
- Package MTRJ duplex connector, BGA surface mount
- **Sources** Uncooled, unisolated DFB, *No SMSR spec*
- <u>Wvlngth</u> 1280,1300,1320,1340 nm
- MUX 4-to-1 silica waveguide combiner
- **Detectors** InGaAs PIN photodiode array
- **DEMUX** Compact molded plastic "bulk zigzag"
- **ICs** 4-channel TX; 4-channel RX (integrated)

Transmitter Subassembly

Robotic assembly achieves <1µm alignment in a fast, fully automated process. Similar equipment already used in production for 1000LX transceivers.

Wavelength Multiplexer uses standard silica waveguide process with ~400 devices/wafer. Sawed, not polished, chips are used to lower cost without sacrificing performance.

Transmitter Optical Subassembly

Receiver Subassembly

Wavelength Demultiplexer

Three views of ray tracing in wavelength demultiplexer

How can Demux be low cost?

- Injection-molded plastic optics Once a mold is built, a complex and precise optical system can be replicated at minimal incremental cost.
- <u>Alignment free assembly</u> Molded mechanical features allow parts to fit together without requiring alignment.
- <u>Tiny dielectric interference filters</u> Small area per chip means one growth can yield HUGE part count.
- <u>Ease of fiber attachment</u> Molded V-groove, integrated into demux passively aligns fiber stub.

Wavelength Demultiplexer

Integrated Circuits

Leveraging Parallel Optics technology, fully integrated multichannel TX and RX ICs are available up to 2.5-Gbd in Silicon. 3.125-Gbd ICs will soon be available.

Newer SiGe technologies will make these ICs extremely simple and robust.

4-channel Transmitter IC

Single-channel TX eye-diagram

- 4-ch Si-Bipolar TX IC
- directly modulated DFB
- 2.5 Gb/s
- 9.5 dB extinction ratio
- Ibias = 8 mA
- Imod = 25 mA
- P (SMF) = -5.8 dBm
- •4 lasers on simultaneously
- butt-coupled into SMF
- uncooled
- unisolated

12-Channel RX IC - Using 4 channels

Soon-to-be available 4-channel IC will greatly reduce RX footprint

Assembled WWDM MTRJ Module

Class 1 Eye Safety

Power Budget should allow 4-channel eye-safe operation

Eye-safe limit at 1300 nm:	+8 dBm
Limit per channel:	+2 dBm
Demultiplexer loss:	<3 dB (expected)
Link Budget:	<7 dB (expected)

 \therefore Received Power Limit due to eye safety = -8 dBm

Parallel Rx IC's are available with better than -20 dBm sensitivity. Thus, other considerations (e.g. power dissipation, EMI) may play a bigger role in limiting received power than eye safety.

WWDM DFB Source Study - GOALS

Experimentally verify that DFBs with low SMSR and no isolator have:

RIN < -117 dB/Hz

 $BER < 10^{-12}$

Small mode-partition noise power penalty

Examine RIN and corresponding BER at high ambient temperature

Power Penalty due to RIN - Model

- Power budget determines how much RIN can be allowed
- GbE specifies -117 dB/Hz
- 12.5 GBd applications require ~ 6 dB less RIN for 1 dB penalty

Power Penalty due to Mode-Partition Noise - Model

Parameters: $\lambda_{min} = 1270 \text{ nm}$ $\lambda_{o} = 1322 \text{ nm}$ $\Delta \lambda = 1.6 \text{ nm}$ $S_{o} (ps/nm^2*km) = 0.092$ $D_{1} (ps/(nm-km)) = -5.086$ k factor = 0.8 Link length = 6 km BER = 10^{-12}

Experimental Setup

Side-Mode Suppression Ratio of DFBs

Reject lasers chosen for poor SMSR

Results: RIN vs. SMSR

Note: 2.34 GHz = 0.75 x 3.125 GBd

Typical Received Eye Diagrams at 2.488 GBd

DFB a (SMSR = 43.24 dB)

6 km SMF

DFB p (SMSR = 0 dB)

Typical BER for DFBs with High SMSR

Typical BER for DFBs with Low SMSR

BER with and without the Waveguide Combiner

RIN Temperature Comparison

Laser n (SMSR = 5 dB)

RIN Temperature Comparison

Laser s (SMSR = 40 dB)

WWDM DFB Source Study - Conclusions

- 1300-nm DFBs with no specification on SMSR and no isolator are suitable for our application.
- Measured RIN < -117 dB/Hz over all SMSR
- Measured PP < 1 dB due to MPN over 6 km SMF
- Measured BER < 10⁻¹² over 6 km SMF
- Current DFBs with I_{bias} ~ 15 mA have sufficient output power and f_r
- BER results improved with waveguide combiner
- Total PP < 2 dB over 6 km SMF

