

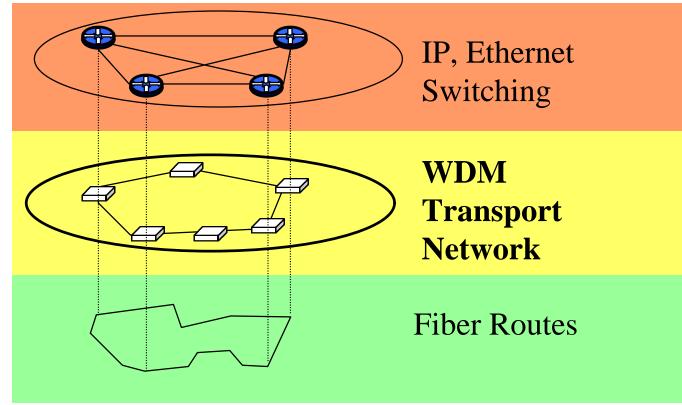
10 Gigabit Ethernet

Application Requirements and Proposed Layer Architecture

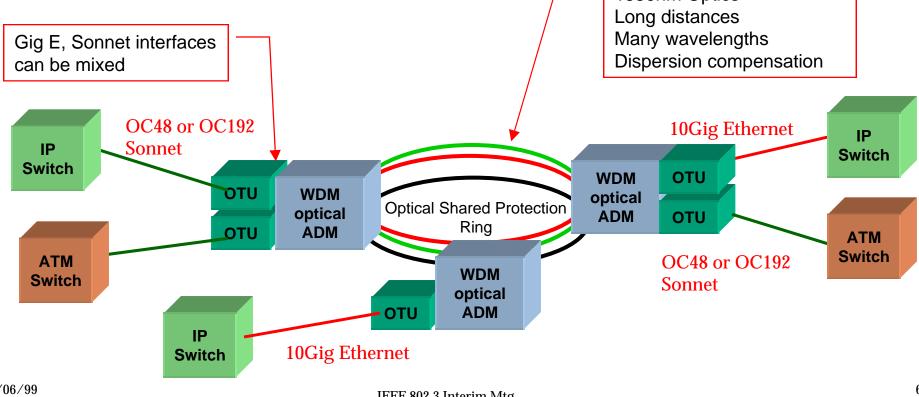
Mike Salzman msalzman@lucent.com

Convergence of Applications

- 10Gig is the next unifying rate
 - Telecom migration from OC48 towards OC192
 - 1 Gig aggregation
 - Decouple requirements between apps, yet provide seamless integration
- LAN Applications
 - In building networks data centers, clusters, risers
 - Campus Interconnects
- Cross Over applications
 - Metropolitan connections to core networks (backhaul)
 - Intra city private networks over dark fiber
 - Evolution, outgrowth of 1 Gig applications
- Telecom
 - Core WDM network access rate
 - Private networks over dark λ


- In building
 - Migration from 1 G
 - Dual rate support (1 G and 10 G)
 - 300 M distance over multimode fiber
 - Why?
 - All surveys show that 300M covers well over 90% of requirements
- Campus and Backbone applications
 - Up to 5 Km distances
 - Extend the 3 Km Single Mode standard
- Distances longer than 5 Km are Metropolitan

- Existing fiber specs in TIA 568 and IEEE specs refer to the state of the art in fiber manufacturing circa 1985
 - The spec of 160MhzKm was designed for FDDI
 - Does not discuss modal bandwidth and dispersion losses
 - Does not support straightforward 10 Gig ethernet operation
- Today, fiber performance levels and manufacturing tolerances are over an order of magnitude better
 - 10 Gig is two orders of magnitude faster than FDDI
 - 10 Gig will service a wider range of applications
- We must be able to include a new multimode, in building fiber specification to support 300M distance

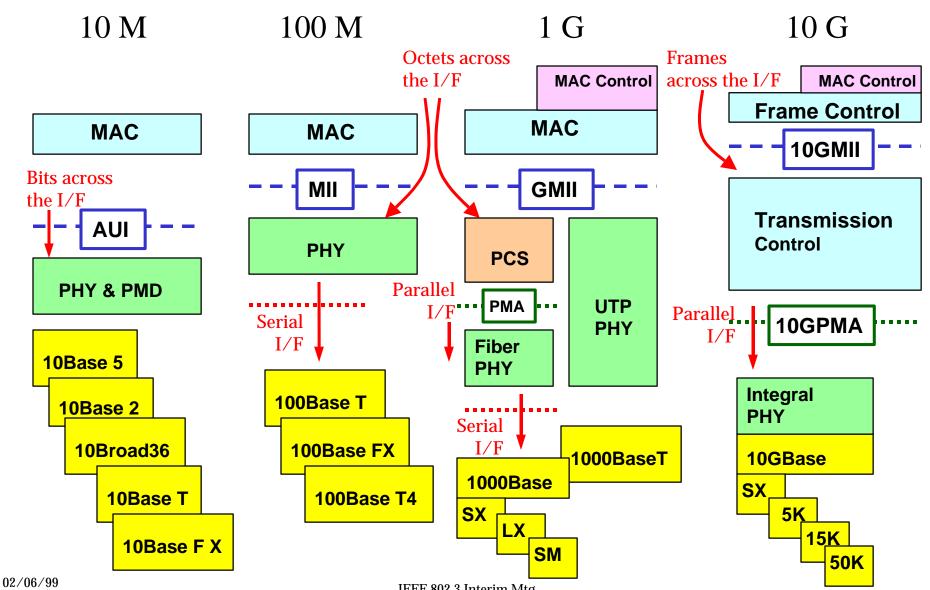

- Each service layer has its own paths and is independent of the lower layer
- Separate control and recovery requirements

- 5-50 Km links are used to access core WDM network
 - Links operate at 1300nm
 - This technique also solves the telecom requirement for long ____ links > 50Km. 1550nm Optics

- Single vs Multi-Segmented Link
 - From Bldg MDF to access point of the carrier
 - Or from Bldg to Bldg
 - No 3R equipment in the link
 - No need for sectionalization, OAM
 - No need for BER monitoring in real time
 - Serial datastream over single wavelength
- Reliability achieved via other means
 - Use of 802.3AD LACP looks most likely
 - Simplified, rapid recovery
 - Short topology simplifies recovery
 - SONET APS is not necessary for this access application

- 10 Gig Payload Packet, Tags, SFD, Preamble, CRC
- Code Functionality
 - Low overhead excess BW is problematic
 - Rapid synchronization and frame alignment
 - BER of 10⁻¹²
 - Link failure detection
 - Efficient recovery from link errors
- Transmission Aspects
 - Low Frequency cut off
 - DC baseline wander

- MAC Layer
 - Becomes a frame handling layer
 - Passes fully constructed frames to Transmission Control
- New Layer Transmission Control
 - Accepts frames over 10GMII
 - Encapsulates
 - Scrambles
 - Frame Delineation


Somewhat similar to PCS layer in GE, but also overlaps some of the PMD functions in GE

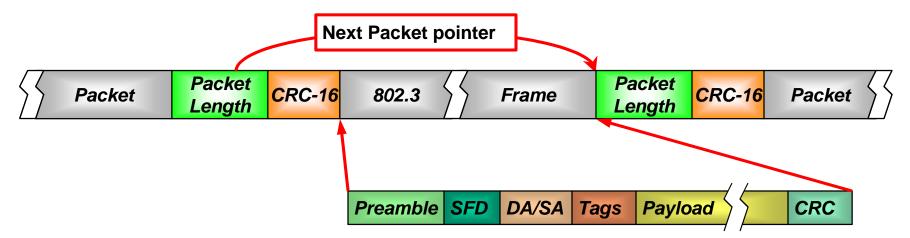
- Passes scrambled octet stream over 10GPMA

Evolution of Ethernet

Architecture over the years

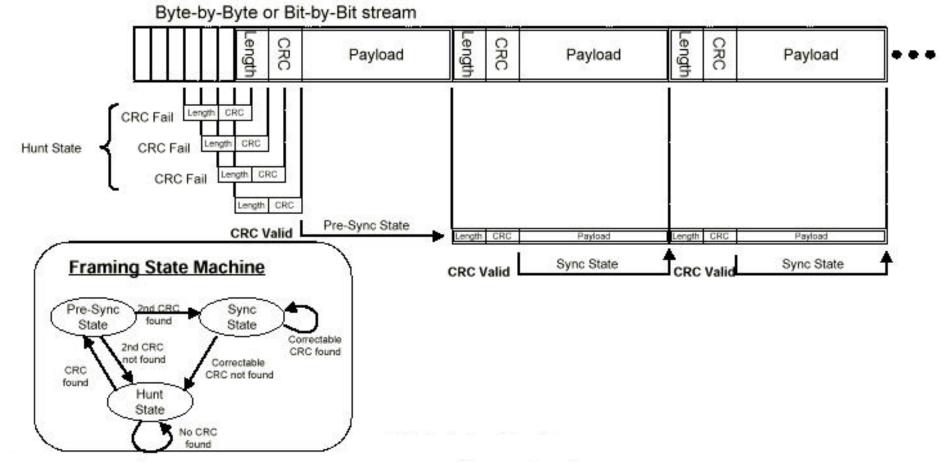
- Reject block codes
 - Attractive features come at high cost of bandwidth
 - 25% increase in BW required for 8B/10B transmission
 - Beyond state of the art for most devices and fibers
 - Generates architectural disruption between LAN and WAN at OTN interfaces
 - WAN applications will NOT use block codes
 - Thus expensive interface conversion equipment will be required
 - Delays in the packet transit due to packetizing/blocking requirements
 - Difficult to apply FEC for coding gains when necessary
 - Fruitless endeavor dB gain outweighed by overhead gain

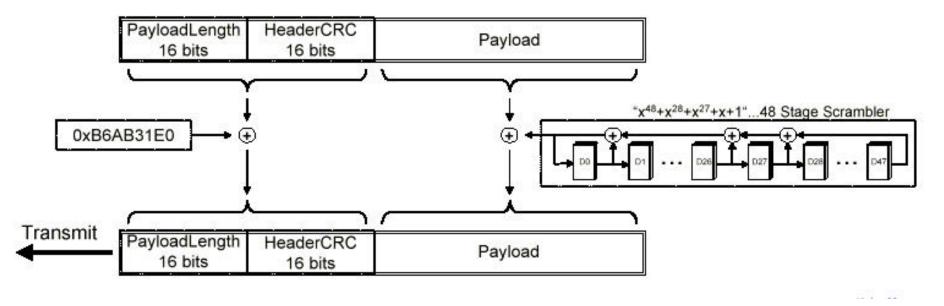
Transmission Control Recommendation



- Frame based Scrambling approach is in operation on long haul links today
 - Proven operating performance, with 10-15 BER
 - Distances of Thousands of miles
 - Feasible Used by core carriers today
 - Can be used in LAN and WAN without change
 - Overhead as low as 6%
 - Meets requirements
- Easily supports MPLS, FEC, and other enhancements
- This protocol can be used seamlessly in WAN apps

Transmission Control Frame Structure


- Structural Aspects
 - Length Header Under 4 bytes is control
 - Header CRC
 - Used as framing indicator, like a comma character
 - Short Lengths can be used for physical link control
 - Autonegotiation, OAM, Scrambler initialization, etc


• When two consecutive CRC headers are valid, then the link is synchronized

- Header is XORd prior to transmission with a 32 bit value
- Payload is scrambled through 48 stage scrambler

- Short haul (<300M) applications will be most numerous
 - Require low cost, compact solutions for dense interfaces
 - 850 nm, VCSEL technology is best suited
- Longer applications operate on Single Mode fiber
 - 1300 nm is the band of choice for flattest dispersion slope
 - 1550 nm band offers lower loss (longer distance) at the cost of dispersion compensations. Suitable for telecom applications with very long range.
 - Fabry Perot lasers are simplest, cheapest devices
 - DFB lasers are more expensive.
 - Uncooled devices are more affordable.

- 10 Gig payload rate
- Serial Ethernet transmission
- Framed, scrambled transmission control layer with low overhead
- Multiple PMDs as follows

5 Km

15 Km

50 Km

- Building Applications
 - Installed Base (160MhzKm) Multimode Fiber
 300 M
 - High Performance Multimode Fiber (850nm)
 300 M
 - Low cost VCSEL devices
- Campus Fiber (1300nm)
 - Fabry Perot Laser, low cost devices
- Metropolitan Fiber (1300nm)
 - Uncooled, low cost DFB laser
- Metropolitan Fiber (1285nm)
 - Temperature stabilized DFB laser