

Multilevel Analog Signaling - Technology & Applications -

IEEE 802.3 HSSG - Coeur d'Alene, ID

Rich Taborek Principal Architect Transcendata, Inc. 1029 Corporation Way Palo Alto, CA 94303 Phone: +1 650 210 8800 x101 Fax: + 1 650 940 1898 Email: rtaborek@transcendata.com

Rich Taborek, Transcendata, Inc.

Technology Requirements

- Derived from customer requirements, Reconciled in PAR
- Survey Said: Cost is #1 Priority, Raw Bandwidth was #2
 - GbE survey ANgigsur.txt ranked implementation cost highest (26%) as Technology Selection Criteria
 - Raw Bandwidth got 20% of the vote
 - Preserve existing cabling plant was included in 'other'.
- Derived Requirements:
 - Low Cost
 - ▶ 10 Gbps (not 2, 2.5, 4, 5 or 8)
 - Support of the existing cable plant (LAN/MAN/WAN)
 - Only the PHY and MAC interface need be changed to support 10 GbE

Rev 1.0	Slide 2	June 1. 1999

Signal Design Challenges

- Observe to the serveral design challenges. The challenges are due to:
 - ➢ High speed logic requirements, 10X GbE
 - Attenuation Fiber Copper
 - Dispersion/Group Delay Fiber/Copper
 - Return Loss Fiber Copper
 - Transceiver Crosstalk Fiber/Copper and Cable Crosstalk Copper
 - Electromagnetic Emissions and Susceptibility Copper
- Solution: Leverage the best of Ethernet and Cost-Effective State-of-the-Art technologies to address these challenges.
- ✤ 1000BASE-T/X provide a solid technology base for 10 GbE.
- A 10 GbE MAS-based PHY uses digital communications techniques to cost effectively meet 10 GbE objectives.

Rev 1.0	Slide 3	June 1. 1999

Technology Justification

- Goal: Specify 10 GbE with technologies which meet cost and performance requirements.
- Direction: Maximize the use of silicon-based technologies best meet this goal (i.e. chips are cheap).
 - Reduce cost/complexity by using a single channel
 - Fiber has the bandwidth, unlike UTP
 - One channel is cheaper/more reliable than 4 (or 2 or 8...)
 - ► Use PAM signaling to increase #bits per Baud.
 - Use coding techniques to offset PAM SNR loss, control DC balance, provide high transition density, etc.
 - Scrambling and Trellis/Viterbi vs. 8B/10B+ vs. others
 - Use compensation techniques to achieve BER requirements in 'difficult' environments (e.g. low BW fiber, long haul) including:
 - Receive Equalization and Transmit Pre-Distortion

Rev 1.0	Slide 4	June 1. 1999

Signal-to-Noise Ratio (SNR)

- * Signal power is decreased by channel attenuation.
- Noise power is the sum of the following (and more):
 - ≻ Laser chirp
 - Inter-Symbol Interference (ISI) due to the dispersion/group delay
 - Transceiver, connector and cable crosstalk
- * SNR is the ration of signal power to noise power
- SNR is related the Bit Error Ratio (BER)
 - ➤ A higher SNR generally allows a lower BER to be maintained
- SNR margin:
 - The amount of additional signal loss or noise that the system can tolerate before the BER increases above a given level

Rev 1.0	Slide 5	June 1. 1999

Bit Error Ratio (BER)

- The ratio of the number of bits received in error to the total number of bits received
- Objectives for Ethernet variants:
 - ▶ 10BASE2, 10BASE-T BER objective is 10⁻⁸
 - ▶ 10BASE5 BER objective is 10⁻⁹
 - > 1000BASE-T BER objective is 10⁻¹⁰
 - ▶ 100BASE-X, 1000BASE-X BER objective is 10⁻¹²
- BER Performance:
 - > BER of 10^{-10} @ 10 Gbps = a bit error every 1 sec.
 - > BER of 10^{-12} @ 10 Gbps = a bit error every 1 min, 40 sec.
 - > BER of 10^{-13} @ 10 Gbps = a bit error every 16 min, 40 sec.
 - IMHO, 10 GbE the BER objective should be at least 10⁻¹², perhaps 10⁻¹³ for parity with GbE link reliability.

Rev 1.0	Slide 6	June 1. 1999

Single vs. Multiple Channels

Single Channel transmission systems are inherently simpler than their Multiple Channel counterparts. Some advantages:

No multiplexing/demultiplexing of data streams

- No skew management and associated delay
- No attenuation due to wavelength multiplexing/demultiplexing
- No requirement for multiple/ribbon fibers (installed cable plant)
- No multiple optics precision alignment issues and variance
- No reliability issues associated with individual channel failures

Direct drive of WDM optics including strategic DWDM systems

- MAS employs one low-cost laser
 - Serial TDM requires a much faster laser, more expensive
 - WWDM requires 4 lasers similar to MAS lasers
 - Parallel Optics requires 4 similar lasers to MAS or >4 cheaper ones
- * MAS uses **1**, **inexpensive**, laser backed-up by **cheap silicon**

Rich Taborek, Transcendata, Inc.

Rev 1.0	Slide 7	June 1. 1999

Pulse Amplitude Modulation

- Provides better bandwidth utilization than binary signaling
 - Binary signaling: a.k.a. On-Off-Keying (OOK), PAM-2, Serial TDM
 - > Each transmitted symbol represents just one bit (0 or 1.)
- PAM-n, where n>2, affects Signal-to-Noise ratio
 - > Adding just one level, PAM-3 (e.g. MLT-3), decreases signal by 3 dB
 - Splitting the signal in half again (6 dB) provides 5 levels (4 'eyes')
 - ◆ 1000BASE-T employs PAM-5, loses 6 dB, and gains it all back
 - ◆ PAM-5 symbols represents one of five different levels (-2, -1, 0, + 1, +2)
 - Each symbol can represent two bits (4 levels) plus one extra level
 - Extra levels provide FEC, special codes, DC balance, transition density
 - SNR increased though Forward Error Correction coding & equalization
 - ▶ Net result: PAM-5 is **250%** more efficient than OOK & 8B/10B
- For 10 GbE: PAM-5 @ 5 GBaud = binary signaling @ 12.5 GBaud

Rich Taborek, Transcendata, Inc.

TRANSCENDATA

Rev 1.0	Slide 8	June 1. 1999

PAM-5 and Beyond

- * PAM-5 provides a cost effective gain over binary signaling
 - ▶ But it leaves us at 5 GBaud for 10 GbE vs. 1.25 GBaud for GbE (4X)
 - Dispersion effects for SMF/1300 nm are minimal (to ~15 km)
 - > MMF modal dispersion is 4X GbE resulting in shorter links
 - ◆ Link distances for typical MMF are 500 MHz km/2.5 GHz = 200 m
 - ◆ Link distances for LOF MMF are 1250 MHz km/2.5 GHz = **500 m**
- PAM-5 technology provides the simplest, 1 channel, 10 GbE solution but falls short of addressing the installed base.
- The following PAM extensions can address the installed LAN/MAN/WAN cable plant:
 - T-Wave signaling for sophisticated dispersion compensation
 - Additional PAM levels to reduce signaling rate/dispersion effects
- The technology to go beyond 5 level PAM is feasible

Rev 1.0	Slide 9	June 1. 1999

Beyond PAM-5

- Linear Quiet lasers are the key to using more levels
 - Laser linearity is proving to be a second order concern
 - ➤ SNR is proving to be the first order concern
 - Uncooled, unisolated standard DFB lasers are prime choices
 - Need to identify the quiet ones (i.e. low RIN, etc.)
- * PAM-8 or 9 provides 33% efficiency gain over PAM-5
 - For a 3 dB link penalty, PAM-8/9, 3 bits/Baud, 3.33 GBaud, f_0 1.875 GHz, supporting MMF with 500 MHz•km/1.875 GHz = 267 m
 - ▶ Note that this exceeds GbE minimum link distances of 220 m
 - ➢ Link distances for LOF MMF are 1250 MHz km/1.875 GHz = 667 m
- SNR takes a beating at PAM-8/9 (9 dB over OOK)
 - ▶ Best to focus on dispersion compensation, WDM after PAM 8 /9
 - Follows WAN strategy, except WANs don't use PAM... yet

Rich Taborek, Transcendata, Inc.

Rev 1.0	Slide 10	June 1. 1999

T-Waves

- Synthesized, Multilevel, Intensity Modulation
 - Waveform synthesis/laser drive by high-speed D/A conversion

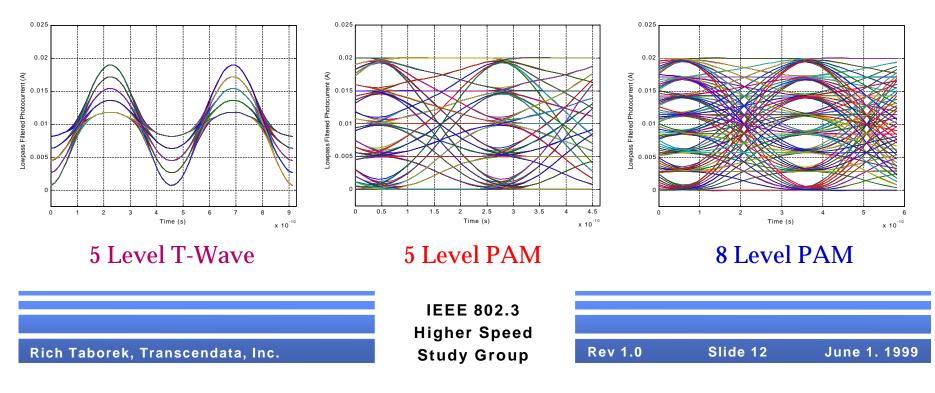
* Significant Link Penalty compared to PAM

4.5 dB penalty for an equivalent number of levels since only half of available levels minus average power are used.

Narrowband Frequency Spectrum

- > Approximately f/2 to 1.5 f
- Reduced spectrum compared to OOK (on-off keying) and PAM
- * High Resistance to Dispersion and Nonlinearity
 - System is loss-limited, not dispersion-limited
 - Ability to characterize and compensate for dispersion
- PAM is more efficient, simpler in 'easy' environments
- T-Waves may be more efficient in 'difficult' environments

Rich Taborek, Transcendata, Inc.

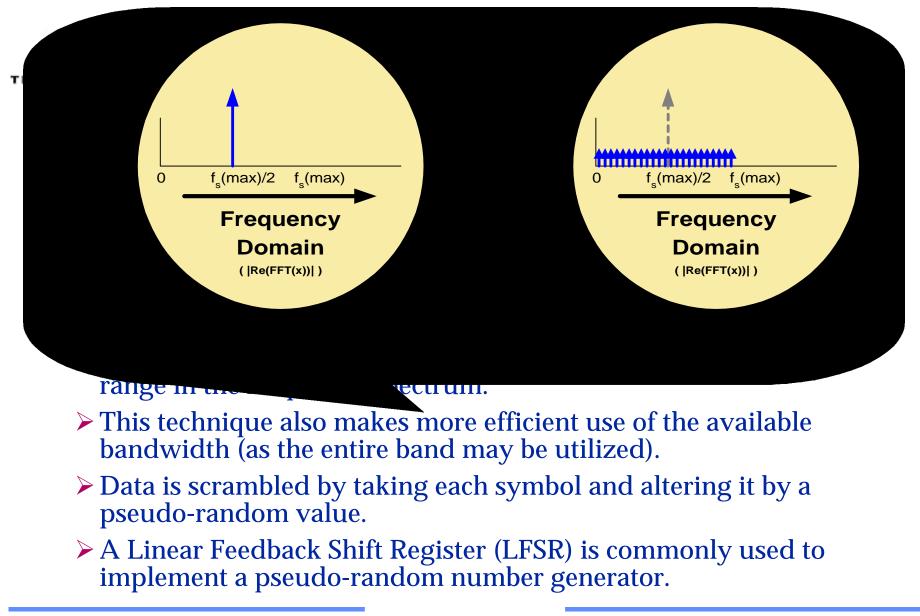

Rev 1.0	Slide 11	June 1. 1999

MAS Signaling Simulation

Constructed a model to analyze MAS optical signaling

- > One purpose of the model is to analyze dispersion/compensation
- Laser and fiber model included
- ➢ Fiber model is SMF now, MMF being added
- ▶ Following details are at 10 Gbps, SMF, 1550 nm lasers
- Dispersion is worse at 1550 nm than 1300 nm

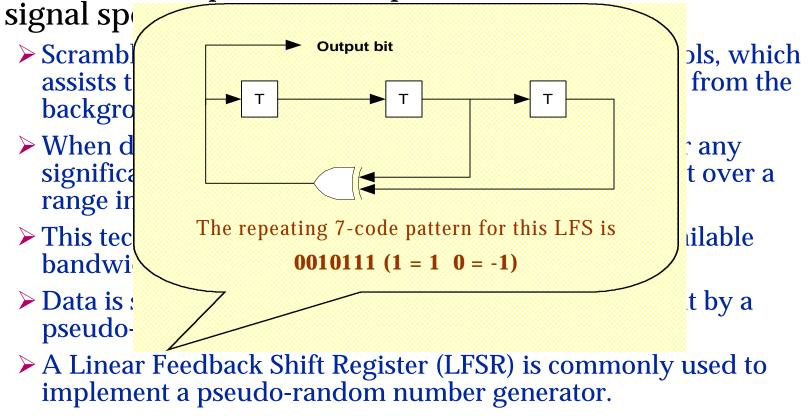
- * 8B/10B, 1000BASE-T PCS or other
- Great 1000BASE-T PCS presentation by Bob Noseworthy of UNH IOL
 - <u>ftp://ftp.iol.unh.edu/pub/gec/training/pcs.pdf</u>
 - Much of the following coding tutorial material is 'pilfered' from the above presentation (thanks Bob, I owe you one or three!)



Scrambling Basics

- Used to randomize the sequence of transmitted symbols and avoid the presence of spectral lines in the transmitted signal spectrum.
 - Scrambling creates essentially uncorrelated data symbols, which assists the receiver in distinguishing the desired signal from the background noise.
 - When data is scrambled, no single frequency is sent for any significant period of time, thus the power is spread out over a range in the frequency spectrum.
 - This technique also makes more efficient use of the available bandwidth (as the entire band may be utilized).
 - Data is scrambled by taking each symbol and altering it by a pseudo-random value.
 - A Linear Feedback Shift Register (LFSR) is commonly used to implement a pseudo-random number generator.

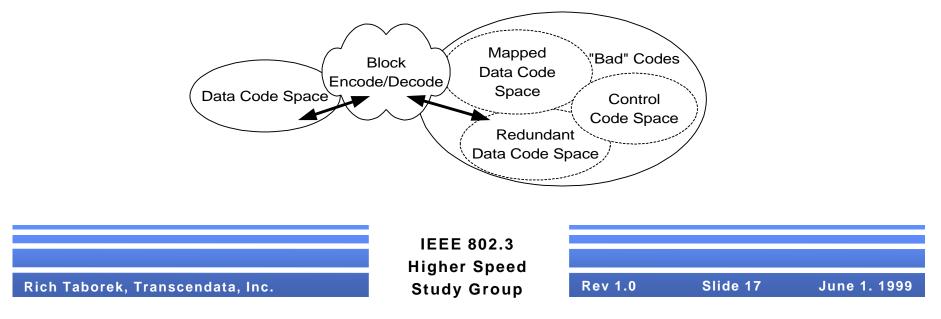
Rev 1.0	Slide 14	June 1. 1999


Rich Taborek, Transcendata, Inc.

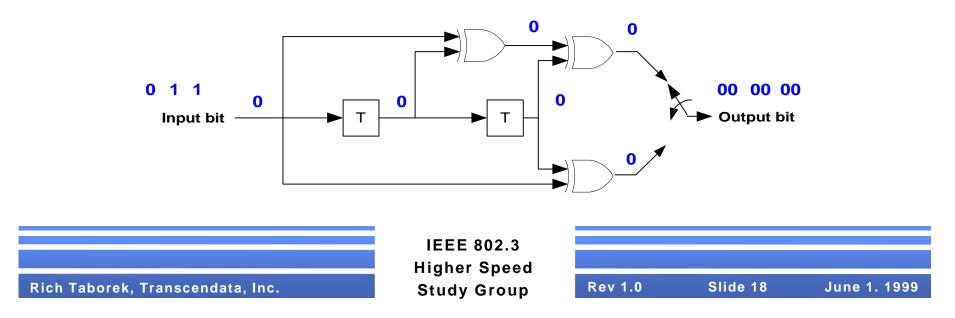
Rev 1.0	Slide 15	June 1. 1999

Scrambling Basics

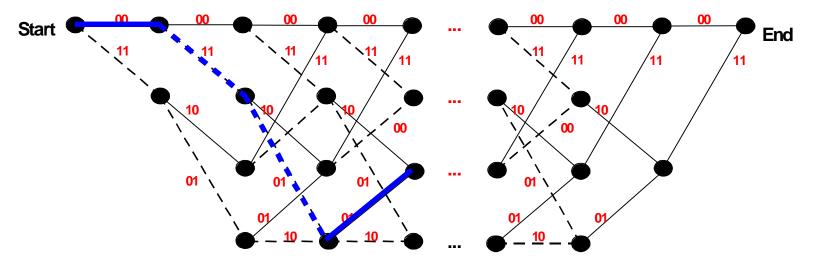
* Used to randomize the sequence of transmitted symbols and avoid the presence of spectral lines in the transmitted


Rich Taborek, Transcendata, Inc.

Rev 1.0	Slide 16	June 1. 1999


- Expands the code space of the data being transmitted.
- * Typical Benefits of Block Codes
 - Allows an intelligent selection of channel symbols from the desired block of data being sent.
 - > Permits rich transition densities (allows for easier clock recovery)
 - Permits DC Balanced codes to be used
 - > Permits non-data (control) codes, such as IDLE, Start of Frame, etc.
- Some Ethernet Block Codes: 4B/5B, 8B/10B, 6B/3T

Convolutional Codes


- Convolutional Codes are a special class of Block Codes
 - A convolutional code may simply be the result of XOR'ing the transmit data with the output of a scrambler.
- * A Simple Convolutional Encoder example:
 - ► The sequence $0_n 1_{n-1} 1_{n-2} 0_{n-3}$ is fed into the encoder, consisting of the time delay blocks, and XOR blocks.
 - > Note the output $00_n 11_{n-1} 01_{n-2} 01_{n-3}$ is at twice the input rate.

Trellis Coding

- The preceding convolutional encoder can be represented in another form - a Trellis Diagram.
 - ➤ A simple trellis provides a structure to the transmitted data stream. Only valid transitions through the trellis may be transmitted!
 - In this example of encoding 0110 to 00,11,01,01, after the codegroup 11 is sent, only the code-groups 01 or 10 are permissible.

If data to send is '0', follow solid line from state and output code-group in **red**. If data to send is '1', follow dashed line from state and output code-group in **red**.

d			
o	Rev 1.0	Slide 19	June 1. 1999

Viterbi Decoding

- A Viterbi Decoder provides Error Correction. Not just Error Detection like most other block codes.
 - The Forward Error Correction mechanism provided by a Trellis Encoder/Viterbi Decoder results in a measurable BER tolerance.
 - Therefore, the overall system performance, oft expressed in terms of the systems SNR is effectively increased.
- The Viterbi structure provided to the underlying symbols transmitted is analogous to spelling and grammar rules. consider:
 - "I coldn't wait til it was over"
 - "I can't believe their still awake"
 - Both symbol sequences are erred, but the knowledge of the structure of the transmission, allows the receiver to properly decode the sequence.

Rev 1.0	Slide 20	June 1. 1999

Signal Compensation

- Used to compensate for signal distortion introduced by the communication channel in order to maximize SNR.
 - Achieved with a combination of analog and digital filtering elements used at the transmitter, at the receiver, or both.

Compensation is used to:

- Minimize or counteract the effects of dispersion/pulse spreading;
- Minimize the transmitted signal energy at frequencies where distortion and disturbances are significant;
- Reduce both low and high frequency signal components;
- > Reject high-frequency external noise components.

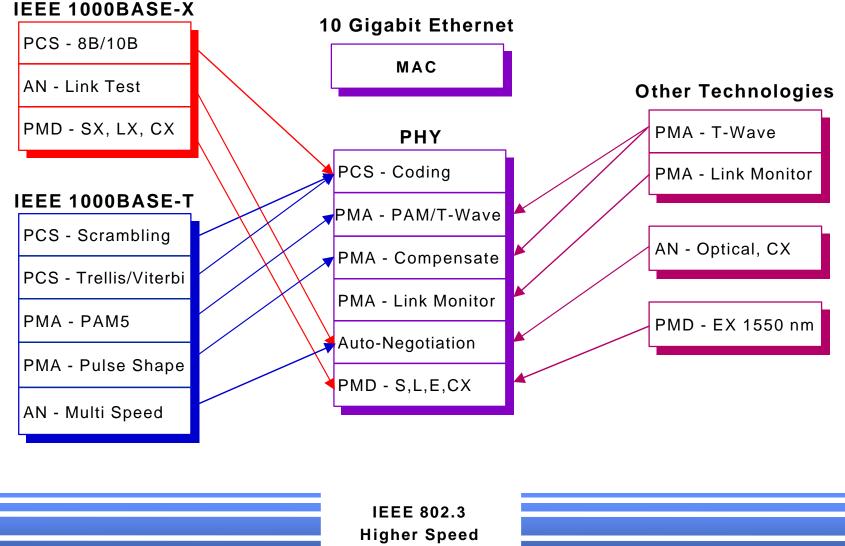
MAS Technologies

- ✤ T-Wave[™] & Pulse Amplitude Modulation (PAM)
 - ➤ T-Waves are special PAM variant
 - Differences include sine-wave carrier, periodic zero-crossings
- * PAM technology is well understood and widely deployed
 - Specify PAM-5 systems first for use in 'easy' environments
 - SMF with 1300 nm DFB lasers to 15 km
 - LOF 50 μm MMF to 500 m
 - 50/62.5 μm MMF @ 500 MHz•km to 200 m
- * PAM-5 covers most environments
- Dispersion compensation required in other environments
- Addressable by T-Waves or more PAM levels
 - Auto-Negotiation can insure MAS PHY compatibility

Rev 1.0	Slide 22	June 1. 1999

MAS-Based PHY

- * MAS forms the foundation of efficient PHY signaling
- Leverages Ethernet MAS-based PHY constructs
 - ► 100BASE-T4 MLT-3
 - ➤ 100BASE-T2 PAM5x5
 - ▶ 1000BASE-T 4D-PAM5

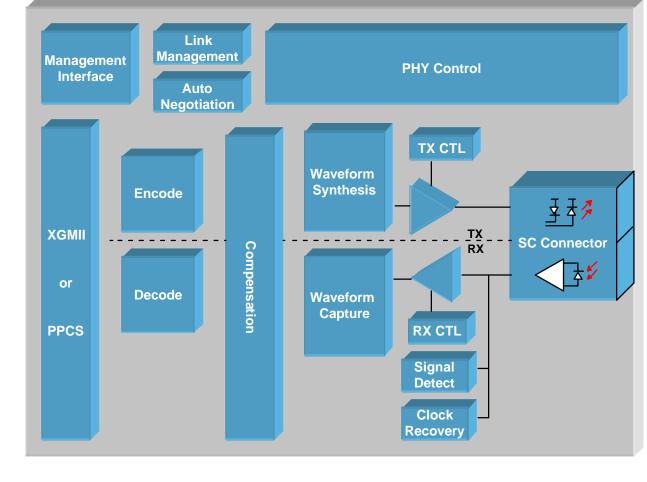

Complete PHY combines other elements/technologies

- Single/Multiple Channels
- Coding: Scrambling, Encoding/Decoding, Error Correction
- Signal Compensation
- Media Independence (e.g. SMF, MMF, Twinax, UTP, STP, etc.)

Rev 1.0	Slide 23	June 1. 1999

MAS 10 GbE Technology Basis

Rich Taborek, Transcendata, Inc.


Study Group

Rev 1.0

Slide 24

June 1. 1999

Optical MAS Block Diagram

TRANSCENDATA

	IEEE 802.3 Higher Speed			
Rich Taborek, Transcendata, Inc.	Study Group	Rev 1.0	Slide 25	June 1. 1999

PCS & PMA

- Physical Coding Sublayer (PCS)
 - Framed, pre-encoded 8B/10B input (data + D/K bit)
 - Scrambling to provide uncorrelated data and DC Balance
 - Trellis encoding for Forward Error Correction
 - > 2+ bits/Baud from 5 levels, 4 Baud/byte @ 2.5 GHz for 10 Gbps
 - PAM-5 4 Baud code-groups yield 625 (5x5x5x5) codes for 256 data + 12 special codes.
 - Ref: 8B/10B yields 1024 codes for 256 data + 12 special codes
 - Viterbi decoding for Error Correction, 6 dB SNR gain
- Physical Media Attachment (PMA)
 - > Xmit: Conversion of code-groups to analog waveforms (DAC)
 - ightarrow PAM-5 \Rightarrow 2 levels above/below, 1 at average optical power
 - Rcv: Conversion of analog waveforms to code-groups (ADC)

Rich Taborek, Transcendata, Inc.

Rev 1.0	Slide 26	June 1. 1999

Auto-Negotiation (AN)

- Unrelated to MAS technology, distinct protocol
- Simplifies the 1/10 GbE integration task
- Uses Tone-based Link Code Words for signaling
 - New AN protocol for optical/copper serial links (SX/LX/EX/CX)
 - Enables 1/10 GbE operation, may extend to 10 & 100 Mbps optical
 - May extend to other protocols (e.g. FC, P1394b, NGIO, FIO, etc.)
- Provides transport for MAS compensation to optimize PHY performance

 \succ Required for best use of the existing cable plant (LAN \Leftrightarrow WAN)

- Leverages standard Ethernet AN management, local device and link partner information, protocol
 - Allows 1/10 GbE devices to be managed like their 10/100/1000 UTP-based counterparts

Rev 1.0	Slide 27	June 1. 1999

MAS PMD

- SX, LX, EX, CX variants; same media as 1000BASE-X
- Similar optical components as 1000BASE-X, a bit faster
 - > OC-48 uncooled, unisolated 1300 nm DFB lasers are sufficient
 - **PAM-5:** Need to generate 2.5 GHz AM pulses
 - **T-Waves:** Need to generate 2.5 GHz AM sinusoids
 - **PAM-8/9:** Need to generate 1.67 GHz AM pulses
- * PAM-5: Similar distances to 1000BASE-X
 - \geq 62.5 µm MMF, 500 MHz•km, 1300 nm \approx 200 m
 - ≻ 50 μm MMF, 1250 MHz•km LOF, 1300 nm ≈ 500 m
 - ≻ SMF 1300 nm ≈ 15 km
- * T-Waves: Extended distances, Dispersion Compensation
 - $> 50/62.5 \ \mu m \ MMF \ 1300 \ nm \approx 1 \ km$
 - ► SMF 1550 nm ≈ 60-80 km

Rev 1.0	Slide 28	June 1. 1999

Addressing PAR Criteria

1) Broad Market Potential

- ▶ Next in the line of scalable 802.3 solutions 10 Mbps 10 Gbps
- High-end Backbone, Server and Gateway connectivity
- Aggregation of GbE switches
- Potential new applications in Carrier Access and WAN space
- 2) Compatibility with IEEE 802.3
 - ► Ignoring CSMA/CD ...
 - MAC conformance, with 10 Gbps authorized extensions
- - New Physical Layer, deemed conformant
 - 3) Distinct Identity
 - MAS enables a single PHY solution
 - Applicable to MMF, SMF @ 1310/1550 nm, CX copper
 - GbE AN capable WDM compatible

Rev 1.0	Slide 29	June 1. 1999

Addressing PAR Criteria 2

4) Technical Feasibility

- ► MAS/PAM technology used in 100BASE-TX, T2 and 1000BASE-T
- > MAS spreads implementation difficulty among all PHY elements
- ➢ Re-use of existing MMF cable plant is feasible
 - T-Wave dispersion compensation, Laser Optimized Fiber (LOF)
- PAM technology reliable, T-Wave feasibility ongoing
- 5) Economic Feasibility
 - MAS solution driving towards low-cost monolithic CMOS
 - MAS complete PHY integrated transceiver feasible

- ➤ MAS employs one low-cost laser
 - Serial TDM > 1 \$\$\$laser, WWDM > 4, Parallel Optics > 4+
- Reduce optics cost, increase system reliability in silicon

Rev 1.0	Slide 30	June 1. 1999

Much more simulation, experimenting and research to do This is only the first Study Group meeting!

Rich Taborek, Transcendata, Inc.

- * Much more simulation, experimenting and research to do
 - This is only the first Study Group meeting!
- PAM-5 signaling w/coding has a 250% efficiency advantage over binary signaling.
 - ▶ Reduction of Baud by 250% in silicon is too much to ignore

- * Much more simulation, experimenting and research to do
 - This is only the first Study Group meeting!
- PAM-5 signaling w/coding has a 250% efficiency advantage over binary signaling.
 - Reduction of Baud by 250% in silicon is too much to ignore
- T-Waves may do much better due to dispersion compensation potential
- * More PAM levels are possible, PAM 8 or 9 is feasible

- * Much more simulation, experimenting and research to do
 - This is only the first Study Group meeting!
- * PAM-5 signaling w/coding has a 250% efficiency advantage over binary signaling.
 - Reduction of Baud by 250% in silicon is too much to ignore
- T-Waves may do much better due to dispersion compensation potential
- More PAM levels are possible, PAM 8 or 9 is feasible
- Specify PAM-5 now, add T-Waves and/or more PAM levels later.

≻ Use AN for compatibility.

Rev 1.0	Slide 34	June 1. 1999