10 Gigabit/sec

Status and Technology

10 Gigabit/sec Status and Technology Date: 99/03/08 page: 1

- Need for Speed (Bandwidth)
- Need for Distance
- Technology Capability
- Technology Choices
- Actions

Need for Bandwidth

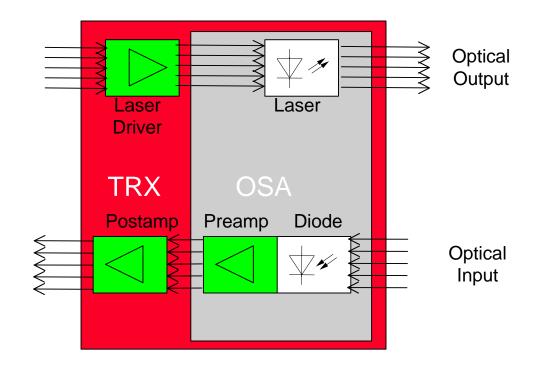
Demand from customers to increase data throughput:

- Computer clustering
- Storage networking
- Expansion of Internet-Based Applications
- Convergence of Telecom and Datacom Environments
- Established 1 GbE Product in Backbone and crossconnect
- Higher data rates in FTTO/D applications expected soon
- --> Strong demand from both Datacom and Telecom camps for faster physical layer
- --> Request from major suppliers for faster products

Need for Distance

Applications for 10 Gigabit Modules

- Short Distance: <100m
 - High Volume Disk Servers
 - Bay to Bay interconnections in CO switches and DCS
 - Interconnection of high speed equipment
- Intermediate Distance: <3km
 - Buildings Interconnection
 - Campus Interconnection
- Long Distance: <10km
 - Long Distance Backbones
 - Cooperate Networks, Metro/City Networks
- Extreme long distance (up to 80km)

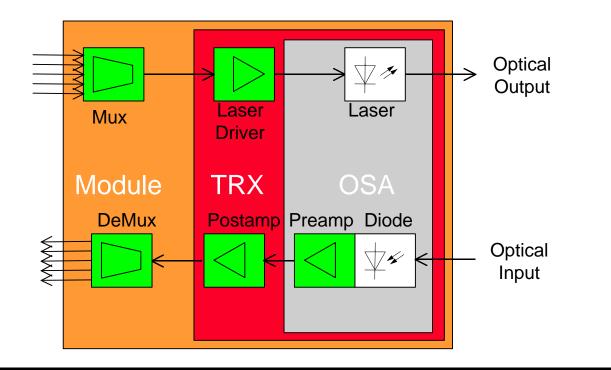

Technology Capability

•Components for 10 Gigabit operation are already available (Laser, Mux/DeMux, Amplifier, Laser Driver)

- New ASIC Technologies supporting 10 Gigabit are available today
 SiGe (f_t 75 GHz)
 Hybrid Bipolar (f_t 50 GHz)
- New Fibre Optic and Fibre technologies have been introduced
- Cost Reduction due to higher volumes are expected

(1)

- Parallel Optical Transceiver
 - •Unencoded Data rate on Fiber: 10 X1Gbps
 - •Encoded Data rate on Fiber: 10 X1Gbps



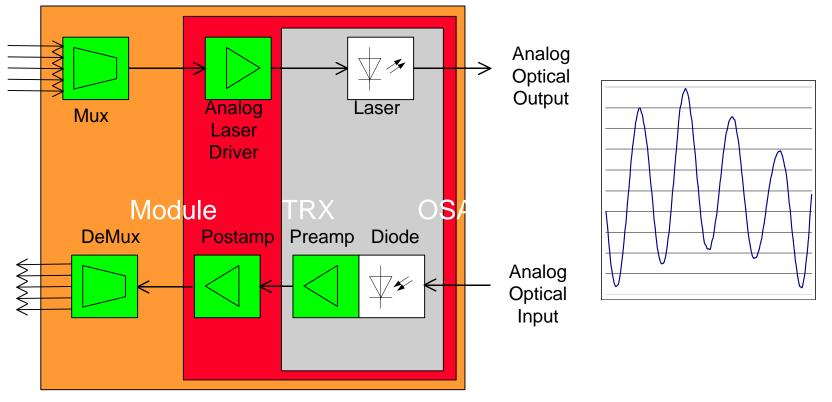
•Serial Optical Transceiver

•Unencoded Data rate on Fiber: 10Gbps

(2)

•Encoded Data rate on Fiber: 10Gbps, 11Gbps, 12.5Gbps

10 Gigabit/sec Status and Technology Technology Choices (3)


- WDM Module
 - •Unencoded Data rate on Fiber: 10Gbps
 - •Encoded Data rate on Fiber: <10Gbps (eg.4 X 2.5Gbps)

10 Gigabit/sec Status and Technology

(4)

- Multilevel Coding (analog transmission)
 Unencoded Data rate on Fiber: 10Gbps
 - •Encoded Data rate on Fiber: <10Gbps

10 Gigabit/sec Status and Technology Date: 99/03/08 page: 9

(5)

Coding:

	8/10B	20% overhead	> Excellent Balance	
	14/15B	10% overhead	> Good Balance	
	Scrambling	No overhead	> Uncontrolled Balance	
Multilevel coding			> Lower line rate	

Partitioning:

"10 GMII", Module, Transceiver, Optical Sub Assembly

Interface:

CML 50/72 Ohm, LVDS, HSTL,

Physical media and distance:

Single Mode, Multimode, Copper, use of existing base

Distance Estimation of availible Technologies

	Fiber	Wavelength	Datarate	Distance
MMF	62.5 µm	n 850 nm	12.5 GBd	25 m
		850 nm	4 x 3 GBd WDM	100 m
		850 nm	10 x 1.25 GBd, par.	300 m
		1300 nm	12.5 GBd	50 m
	50 µm	850 nm	12.5 GBd	50 m
		1300 nm	12.5 GBd	50 m
<mark>SMF</mark>	9 µm	1300 nm	12.5 GBd	10 km
		850 nm	12.5 GBd	TBD
	5 µm	850 nm	12.5 GBd	TBD

Actions

- The Technology is ready we just have to pick the right one
- The Industry wants the speed and needs solutions

Siemens proposes to create a study group to determine the optimal solution(s)