### **300 meters on installed MMF** Part I: Architectures

Jaime E. Kardontchik Stefan Wurster

Hawaii - November 1999

email: kardontchik.jaime@microlinear.com



## Objectives

300 meters provides an optimum coverage of installed multimode fiber

Compare proposed architectures that could support up to 300 meter link lengths on 50 um and 62.5 um MMF



# Eye Patterns at fiber exit (1300 nm)

- Simulations use 1 GbE link model (see Ref 1) including laser rise-time, fiber modal and chromatic bandwidth, connector loss and cable attenuation at 1300 nm
- Simulated architectures:
  - PAM-5 + scrambling + 4-WDM @ 1.25 Gbaud/s
  - PAM-2 + 8b/10b + 4-WDM @ 3.125 Gbaud/s
  - PAM-5 + scrambling + serial @ 5 Gbaud/s



#### 1.25 Gbaud/s - 300 meters



#### 3.125 Gbaud/s - 300 meters



ISI loss =  $10*\log(P0/P3) \sim 3.5 \text{ dB}$ 



#### 5 Gbaud/s - 100 meters (\*)



(\*) eye closed at 200 meters, even with 500 MHz\*km fiber



### Eye patterns - 300m: Summary

▶ ISI is negligible at 1.25 Gbaud/sec

- The system running at 3.125 Gbaud/sec has a large ISI penalty loss.
- The architecture at 5 Gbaud/s can not be used with 300 meters fiber (the eye is already closed at 200 meters)



#### ISI LOSS vs LINK LENGTH





### Receiver Front End

Assume PIN Photo Diode + Trans-Impedance Amplifier



Electrical SNR =  $10 * \log (Is^2 / In^2)$ 



### Small Signal Receiver Front End



$$A(s) = \frac{Ao}{1 + s/wa} \qquad wp = \frac{1}{R^*Cp}$$



# Small Signal Transfer Function Vo/Is = $-R*\frac{1}{1+j*(1/Q)*(w/wo)-(w/wo)^2}$

This is a 2nd order lowpass. wo = 2\*pi\*B. Usually, we set Q = 1/sqrt(2) (Butterworth).

Assuming Ao >> 1 and wa << wo we obtain:

$$wp = wo/Q$$

or

$$R = \frac{1}{Cp} * \frac{Q}{WO} = \frac{Q}{2*pi*Cp} * \frac{1}{B}$$



#### **Feedback Resistor vs Bandwidth**



AMCC's Transimpedance Amplifiers



### Thermal noise current

Replacing R into the equation for the thermal noise current, we finally obtain:

$$= \frac{8*pi*k*T*Cp}{Q} * B^2$$

The thermal noise power is proportional to the **square** of the bandwidth B.

(for an alternative derivation see: Paul E. Green, "Fiber Optic Networks", Prentice Hall, 1993, page 297, Eq 8.32)



### Electrical SNR @ 300 m

Neglecting any coding gain of the 1.25 Gbaud/s system, the relative SNRs @ 300 meters are:

SNR(1.25Gb/s) - SNR(3.125Gb/s) = $= 10*\log(P1/P3)^{2} + 10*\log(B3/B1)^{2}$ 

with B3 = 3.125, B1 = 1.25. Hence,

 $SNR(1.25Gb/s) - SNR(3.125Gb/s) \sim -5 + 8 = +3 dB$ 



#### ELECTRICAL SNR vs LINK LENGTH



(coding gain @ 1.25 Gbaud/s not included. It would shift the curve up)



#### ELECTRICAL SNR vs LINK LENGTH



(coding gain of 6 dB @ 1.25 Gbaud/s included)



### Differential delay skew in 4-WDM



with D, a function of wavelength, given by Eq 9.10, Ref 1

Integrate:  

$$D * d \lambda = d \begin{bmatrix} 1 \\ - \\ Vg \end{bmatrix}$$



### Differential delay skew

Differential delay between two wavelengths:



where L is the fiber length



### Differential Delay Skew

- Using wavelengths of 1280,1300,1320 and 1340 nm (see Ref 2), the differential delay skew between the extreme wavelengths is given by:
  - $t4 t1 \sim 0.33 * L$  (L in meters, time in psec)
- ∞ @ 300 m the differential delay skew is 100 psec.
- Assuming one clock recovery per Rx (same sampling phase for the 4 channels), the 3.125 Gbaud/s system (with only 320 psec baud period) will be more sensitive to the delay skew penalty.



#### 3.125 Gbaud/s -300 meters - delay skew effects



(superimposed extreme wavelengths' eye patterns)



### Summary of 3 architectures

PAM-5+ serial @ 5 Gbaud/s has a clear optical power advantage in shorter link lengths (no optical muxes), but ISI limits it to ~ 100 m link lengths.

8b/10b + 4-WDM@ 3.125 Gbaud/s provides a better coverage of the (0-200m) space, but at 300m ISI loss and delay skew penalty are large.

PAM-5 + 4-WDM @ 1.25 Gbaud/s becomes an attractive alternative, if used with coding gain, to provide the solution for the (0-300m) coverage space.

(continues in Part II)

