IEEE 802.3 Higher Speed Study Group

10Gig MII update

York, UK 28-September-1999

Howard Frazier - Cisco Systems

Outline

- Goals and Assumptions
- Interface Locations
- Parallel Interface
- Serial Interface
- Inter-Packet Gap
- Management Interface
- Scaling, Integration, Flexibility
- Summary

Goals and Assumptions

- Allow multiple PHY and PMD variations
- Provide a convenient partition for implementers
- Provide a standard interface between MAC and PHY
- Provide a standard interface between PHY and PMD
 - Potential for use in other applications, e.g. Fibre Channel
- Interfaces must be scalable in speed and width
 - Keep up with technology development
 - Allow implementation flexibility
- PMD components can be arbitrarily complex
 - Low Complexity: Parallel fiber
 - Moderate complexity: CWDM, Serial fiber
 - High complexity: SONET, MAS

Parallel Interface - Coding

- Use embedded delimiters rather than discrete signals
- Control bit (C) is "1" for delimiter and special characters
- Control bit (C) is "0" for normal data characters
- Delimiter and special character set includes:
 - IDLE, SOP, EOP, ERROR
- Delimiters and special characters are distinguished by the value of the 8 bit data lane when the corresponding control bit is "1"
- Data (d) symbols are striped on lane 1, lane 2, lane 3, lane 0, etc.
 - Frames (packets) may be any number of symbols in length subject to minFrameSize and maxFrameSize

Parallel Interface - Coding

- IDLE (I) is signaled
 - during the Inter-Packet Gap
 - when there is no data to send
- SOP (S) is signaled
 - for one byte duration at the beginning of each packet
 - always on lane 0
- EOP (T) is signaled
 - for one byte duration at the end of each packet
 - may appear on any lane
- ERROR (E) is signaled
 - when an error is detected in the received signal
 - when an error needs to be forced into the transmitted signal

Parallel Interface - Example

Parallel Interface - Electrical Characteristics

Use Stub Series Terminated Logic for 2.5 Volts

- SSTL_2
- EIA/JEDEC Standard EIA/JESD8-9
- Class I (8 ma) output buffers

Symbol	Parameter	Min	Тур	Max
VDDQ	Supply Voltage	2.3	2.5	2.7
VREF	Reference Voltage	1.15	1.25	1.35
VTT	Termination Voltage	VREF-0.04	VREF	VREF+0.04
VIH(dc)	dc input logic high	VREF+0.18		VDDQ+0.3
VIL(dc)	dc input logic low	-0.3		VREF-0.18
VIH((ac)	ac input logic high	VREF+0.35		
VIL(ac)	ac input logic low			VREF-0.35

Interface Locations

Serial Interface

- 4 x 2.5 Gbps
- Transmit and Receive data signals
- "courtesy" clock reference input for PMD
- Data and clock signals are:
 - Differential
 - CML "like"
- Control signals provided via MDIO/MDC
 - RX_LOS (signal detect)
 - TX_DISABLE
 - Device ID
 - Other PMD specific control functions

Serial Interface - Coding

- Use 8B/10B NRZ encoding
 - well understood, widely implemented, robust
 - simple to implement in CMOS, BiCMOS, SiGe
 - excellent run length and DC balance characteristics
- Use 3.125 GBaud signaling rate
 - within limits of FR-4 PCBs
 - SerDes within limits of 0.25 micron CMOS
- Directly map and encode bytes from parallel interface

10Gig MII update		Page 13 of 24
hmf	пззб	27-September-1999

Serial Interface - Coding

	Code Key	/
Symbol	8B/10B Code	Description
K	K28.5	Idle/even cycles
R	K28.0	Idle/odd cycles
S	K27.7	Start of Packet
Т	K29.7	End of Packet
Е	K30.7	Error
d	Dxx.y	Data

- K28.5 contains a comma, used to establish synchronization
- K28.5/K28.0 produces an IDLE with good spectral characteristics

	Hamm	ing Di	stance	•
	K28.0	K28.5	K27.7	K29.7
K28.0	-	3	4	4
K28.5	3	-	5	3
K27.7	4	5	-	2
K29.7	4	3	2	-

Serial Interface - Lane Identification

- Lane identification is not a problem for parallel fiber or CDWM
 - Lane to lane connections are controlled by connector keys or "color" coding
- A serial PMD which muxes and demuxes the 4 lanes can identify lane 0, 1, 2, and 3 by scanning for the KRKRKRKR sequence, which would become KKKKRRRRKKKKRRRR in a serial stream

The Start of Packet symbol (S) can be used to sort out the lanes in the event they get rotated

Inter-Packet Gap

- Assume that clock tolerance compensation is performed in the PCS or MAC, at the decoded data level
 - Eliminates concerns about preserving disparity
 - Eliminates concerns about granularity of Idle insertion/removal
- IPG needs to be longer than the number of bits accumulated during frame reception with worst case clock mismatch
- Assume +/- 100 ppm oscillators
 - Worst case mismatch equals 2.5 bits for 1518 byte Ethernet packet

Inter-Packet Gap

- Minimum Transmit IPG = 12 bytes
 - Transmitters may emit longer IPGs
 - 64 bit implementations may prefer 8 or 16
- Minimum Receive IPG = 4 bytes
 - 64 bit implementations may prefer 0 or 8
- SOP (S) is not included in the IPG, because it replaces the first byte of the Ethernet preamble
- EOP (T) is included in the IPG

Interface Locations

Management Interface

- Reuse management interface protocol from 802.3u clause 22
- Define new bits and registers as needed for 10 Gbps operation
 - Need to be careful about bit and register consumption
- Propose use of the ST sequence (00) for transactions with PMD
 - Use of a new ST sequence opens up a fresh set of registers
 - PHY and PMD registers can be defined independently

Scaling, Integration, Flexibility

- The parallel interface can be scaled in speed and width
 - 32 data bits, 4 C bits
 - 16 data bits, 2 C bits
 - 8 data bits, 1 C bit
- The delimiter and special character definitions remain constant
- Since this is not an exposed interface (no connector), the speed and width choice is up to the implementer
- No need to "negotiate", monitor, or control the speed and width

10Gig MII update	IEEE 802.3 HSSG	Page 21 of 24
hmf	HSSG	27-September-1999

Scaling, Integration, Flexibility

hmf

Scaling, Integration, Flexibility

Summary Together, these two interfaces provide lots of flexibility Both interfaces can be scaled in speed and width without changing the protocols The EIA/JEDEC SSTL_2 standard can be referenced for the parallel interface electrical specification The existing clause 22 management interface can be reused and extended to manage PMDs **IEEE 802.3**

HSSG

hmf

10Gig MII update

Page 24 of 24