
White Paper on the MB810 Line Code for 10GbE

Dae Young Kim, Changoo Lee, Chun Sik Shin, Hae Won Jung, and Hyeong Ho Lee

Abstract

This paper describes a new line code called MB810 proposed for use with 10GbE being standardized by IEEE 802.3.
The key feature of the code is that it preserves many good code properties of the 8B10B code, a 1GbE standard and a
strong candidate even for 10GbE, and yet consumes half the bandwidth. The theoretical background, design principles,
performance characteristics, and implementation issues are given.

I. Introduction

I
N pursuit of line codes for 10 Giga-bit Ethernet (10GbE), binary block codes persist to be compet-
itive, as it did with 1GbE, due to many good features inherently provided:

� Being binary, they �t nicely with optical channels su�ering from nonlinearity which cannot be
perfectly eliminated in practiced engineering.
� Being binary, they o�er the maximum receive signal-to-noise ratio(SNR) for the same given con-
ditions, e.g., transmit optical power and optical span, compared to other multilevel codes.

� By block coding, they can be made inherently run-length limited(RLL).
� They can be easily made to be DC-free.
� By block coding, it is easy to provide for extra control symbols.

In spite of all these advantages, the major concern playing against adopting the block coding is the
fact that they usually require more channel bandwidth than other choices due to the increased line
rate. When using 8B10B for 10GbE, for example, the main-lobe bandwidth, i.e., the bandwidth to
the �rst power spectral null, is 12.5GHz, 25% more than with Scrambled NRZ.

This White Paper is to introduce a code which exactly alleviates this bandwidth dilemma of binary
block coding. Our code called MB810 encodes each 8 data bits into 10 line bits as 8B10B does, yet
with half the resultant line bandwidth; the main-lobe bandwidth for 10GbE is 6.25GHz.

Design of such a code has been possible by making novel use of a theorem established and published
by the author [1]. The theorem establishes a condition for a digital signaling system to operate
within the theoretical minimum-bandwidth(MB) dictated by Nyquist, hence usually called the Nyquist
bandwidth. The Nyquist bandwidth is, by de�nition, half the signaling frequency. With most usual

non-MB codes including NRZ, 8B10B, and PAM5, the line bandwidth is as wide as the signaling
frequency.

II. Theoretical Background

Consider a digital transmission system consisting of

� a line coder
� a pulse shaper
� a receive sampler
� a line decoder.

Usually, the function of a pulse shaper is distributed among a transmit(TX) �lter, the optical
channel, and a receive(RX) �lter. The pulse shaper represents the whole channel between the outlet
of the TX line coder and the inlet of the RX sampler.

D. Y. Kim is with the InfoCom Dept., Chungnam National University, Taejon 305-764, Rep. of Korea(email:
dykim@ccl.chungnam.ac.kr).
C. Lee, C. S. Shin, H. W. Jung, and H. H. Lee are all with the Router Technology Division, the Electronics and Telecommuni-

cations Research Institute, Taejon 305-606, Rep. of Korea(email: cglee@etri.re.kr).



Assume the line coder outputs a symbol every T seconds, and let yn denote the coder output symbol
at t = nT . Then consider a code parameter called running alternate sum(RAS):

RAS �

JX

n=I

(�1)nyn; (1)

where I and J are integers. RAS is the sum of the coded output symbols within an arbitrary interval
between t = IT and t = JT , yet modi�ed with alternating polarity.

Then further consider an associated code parameter called alternating sum variation(ASV) de�ned
as

ASV � max
I;J;fyng

jRASj = max
I;J;fyng

�����

JX

n=I

(�1)nyn

����� : (2)

That is, ASV is the peak-to-peak variation of RAS measured over entire coded output symbol stream.
One thing to be careful in evaluating DSV and ASV according to Eqs. 1,2 is that the coded line

symbols yn are assumed to take on levels of normalized spacing. That is, in the case of binary signaling,
each yn takes on �1=2; 1=2. Therefore, logical line symbol '1' and physical line symbol '1/2' will be
used interchangeably in this paper. The same will be true of '0' and '-1/2'.

By use of ASV, the following theorem can be proved [1]:

Theorem 1: If ASV is �nite, the code has a spectral null at the Nyquist frequency.
The Nyquist frequency fN is, by usual de�nition, half the signaling frequency R:

fN � R=2 = 1=2T:

And a spectral null of a code means two things:
� There is no line spectrum (discrete power spectral component) at the associated frequency.
� There is a notch in the continuous power spectrum at the associated frequency.
A code with a spectral null at the Nyquist frequency is usually called a Nyquist-free code. Thus the

above theorem is equivalent to:

Theorem 2: If ASV is �nite, the code is a Nyquist-free code.
Nyquist-free codes possess an extra yet very important MB property [1]:

Theorem 3: A Nyquist-free code is a minimum-bandwidth(MB) code.
An MB code is a code whose output symbol stream can be passed free of inter-symbol interference(ISI)
through a bandwidth not greater than the Nyquist bandwidth. That is, with an MB code, the necessary
channel bandwidth is only the Nyquist bandwidth.

By use of a system modeling introduced at the beginning of this section, an MB code can also be
de�ned to be a code which can be pulse-shaped by a sinc pulse sinc(t=T ) without closing the resultant
eyes in the RX eye diagram for any arbitrary source data input to the TX line coder. Pulse shaping
by a sinc pulse is equivalent to �ltering by an ideal (brick-wall) low-pass �lter(LPF) of a Nyquist

bandwidth. Also note that the vertical eye opening (eye height) will remain intact since the shaping
pulse is ISI free. However, the horizontal eye opening (eye width) will be a�ected by the choice of
the source data pattern. What this de�nition of the MB property states is that the eye will remain
horizontally open for any and even the worst-case source data pattern.

In the case of non-MB line codes, a usual method of reducing the necessary channel bandwidth for
ISI-free transmission is to pulse-shape the code symbols by a raised-cosine �lter with a roll-o� factor
less than one. However, for random binary source data input, the horizontal eye width of such a
system shrinks proportionally with the roll-o� factor. With zero roll-o� factor, i.e, with the Nyquist
bandwidth, horizontal eye widths of such a code reduce to zero, closing the RX eyes.



What if the pulse is not ISI-free? For example, in high-speed optical digital transmission, the channel
response is hardly shaped to an ideal ISI-free form. The TX pulse is usually a square pulse with 100%
duty cycle. The composite of the optical path and the RX �lter is approximately a second-order LPF.
It can be experimentally demonstrated that with the same pulse shaping(TX �lter + Channel + RX
�lter), MB codes render eyes considerably wider than non-MB codes. More on the performance issue

will be discussed in Sec. VII.
Before stepping to the next section, one might recall a familiar code parameter related to RAS and

ASV. Code designers have used a code parameter called running digital sum(RDS) de�ned as

RDS �

JX

n=I

yn: (3)

The peak-to-peak variation of RDS is called digital sum variation(DSV):

DSV � max
I;J;fyng

jRDSj = max
I;J;fyng

�����

JX

n=I

yn

����� : (4)

And the following theorem holds:

Theorem 4: If DSV is �nite, the code is a DC-free code.

Note the similarity between the ways how concepts of the DC-free and the Nyquist-free property are
derived. Yet, the Nyquist-free property accompanies a very important extra property; MB property.
Also note that the smaller the value of DSV or ASV, the more profound the DC-free or the MB

property; the smaller the DSV, the wider the spectral notch at zero frequency; the smaller the ASV,
the wider the spectral notch at the Nyquist frequency and the eye width.

III. Basic Code Design Building Block: BUDA Cell

With the knowledge of ASV and DSV, assume we want to design a DC-free MB code. There might
be many ways to do the job, but one strategy might be to seek for a short binary sequence for which
RDS and RAS are both zero in a self-contained way. Then a code design based on a �nite accumulation

of this zero-sum sequence will always ensure �nite DSV and ASV values and thus a DC-free and MB
code.
Consider a binary sequence 011000. Its RDS is zero:

d = (1=2) + (1=2) + (�1=2) + (�1=2) = 0: (5)

And its RAS is also zero:

a = (�1)n(1=2) + (�1)n+1(1=2) + (�1)n+2(�1=2) + (�1)n+3(�1=2) = 0: (6)

It is also easy to see, by use of Eqs. 4,2, that the peak-to-peak variations, i.e., DSV and ASV, are both

one.
Another way of deriving the code parameters of the sequence is to draw the trace of the sequence

over the RDS-RAS plane as done in Fig. 1. Assume that the RDS and RAS are zero at the start of
the sequence. Then as each bit of '1100' is output, the RDS changes step-wise as '+1/2, 1, +1/2, 0',
returning to the equilibrium. In the case of RAS, the value of n in Eq. 6 has some bearing. If n is
even, the RAS changes as '1/2, 0, -1/2, 0', returning to the equilibrium as shown in Fig. 1(a). If n is
odd, on the other hand, the RAS changes as '-1/2, 0, +1/2, 0', also returning to the equilibrium as

shown in Fig. 1(b).
Therefore the '1100' sequence draws a diamond-shaped cell on the RDS-RAS plane. Recall that

DSV is the peak-to-peak variation of RDS by de�nition. Then from Fig. 1, the horizontal width of



Fig. 1. BUDA cell. (a) CW BUDA (b) CCW BUDA

the cell corresponds to RDS, which is one. A similar observation is true of RAS and so the vertical
width of the cell corresponds to RAS, which is also one. Thus the diamond-shaped cell represents a
sequence of unit DSV and ASV, thus is named BUDA for 'binary unit DSV and ASV.'

As seen from Fig. 1, there are two kinds of BUDA's. Fig. 1(a) is a clockwise(CW) BUDA whereas Fig.
1(b) is a counterclockwise(CCW) BUDA. It is also interesting to notice that right-arrowed branches

indicate logical symbol '1's(physical symbol 1/2) whereas left-arrowed branches indicate logical symbol
'0's(physical symbol -1/2).

Although we described the concept of BUDA by use of the '1100' sequence, it is to be noted that
the same line of logics apply to any circular shift of the sequence. That is, all of '1100', '0110', '0011',

and '1001' are equivalent in the sense of BUDA.

BUDA can be utilized as a basic building block for designing binary DC-free MB code. Next few
sections illustrate such usage.

IV. Simple Design Examples

Consider we want to design a (1,2) binary MB block code, i.e.; one input data bit will be coded to
two output line bits. We do this by constructing a necessary state transition diagram by accumulating

a minimal number of BUDA cells.

Consider a thus constructed BUDA state diagram shown in Fig. 2. Four BUDA cells are stacked
by overlapped branches of the same direction of arrows. Two cells are CW BUDA's while the other
two are CCW BUDA's.

Four nodes are used as states while other nodes are merely transit nodes to be visited in moving

from one state to another.

To understand the coding procedure, assume the coder is at S1 at the start. Because the number of
input bits is one, there needs to be two transition paths to other states. And because the number of
output bits is two, each such path should consist of two-hop branches; each BUDA branch represent

one line bit. With these criteria in mind, we �nd that there are two two-hop paths out of S1; one is
to S2, and the other is to S4. The path S1-S2 represents two line bits '01'. The path S1-S4 represents
'11'. Recall, in identifying the line bits along transition paths, each right-arrowed branch represents
'1' while each left-arrowed one does '0' in BUDA.

Studying the cases of other three states, we �nd that the same holds true of them; there exists
two two-hop paths out of each state; each such path terminates on another state. In all, we have a
successful BUDA stack for our MB12 code.

Yet, there remains one more degree of freedom about which exit path is to be triggered by which
input bit value. At S1, for example, shall input '0' trigger the '11' transition to S4 or the '01' transition



TABLE I

MB12 Codebook

state input output next state

S1 0 11 S4
S1 1 01 S2

S2 0 11 S3

S2 1 10 S1

S3 0 00 S2
S3 1 10 S4

S4 0 00 S1
S4 1 01 S3

to S2? Similar questions hold for other states, too. And just here lies a design freedom.

In further studying the output bits along the transit paths out of each state, we note that one of the
two exit paths out of a given state represent two bits of the same value whereas the other represent
two bits of di�erent values. Therefore, one choice in mapping from an input bit to two output bits
is to map a '0' to the two output bits of the same value and to map a '1' to the two bits of di�erent

values. We then construct a state transition table or a codebook as shown in Table I. At S1, an input
'0' triggers an output '11' and a state transition to S4 whereas an input '1' triggers an output '01' and
a state transition to S2. And the like with other states.
The coding of MB12 can also be represented by a conventional form of state transition diagram

which is shown in Fig. 3.

Fig. 2. BUDA cell stack of MB12

MB decoding is simple due to a novel mapping rule adopted in coding. That is, Exclusive OR of
the two receive bits is the decoded data bit; '00' and '11' maps back to '0' while '01' and '10' do to '1'.
Now what about DSV and ASV of MB12? It is trivially easy to evaluate the parameters. See Fig. 2

and observe that both DSV and ASV of MB12 are 2. Since both DSV and ASV are �nite, MB12 is a
DC- and Nyquist-free code, i.e., a DC-free MB code. It should also be noted that MB12 is also strictly
RLL; the run-length limit is three. In all, MB12 is a binary DC-free RLL MB code.
One can exercise the coding principles established in Sec. III and exempli�ed in this section to

design one's own binary MB codes, e.g., MB24 and MB34. As noted above, there are a fair degree of
freedom in exercising the coding principles to arrive at di�erent design results.
Our design choices of MB24 and MB34 are shown in Figs. 4,5. MB24 neatly resulted in one single

state. It consumes the same number of BUDA cells as MB12 does and so has the same DSV and
ASV values of 2. The di�erence is that the central node is the one and only state. Decoding is



Fig. 3. State diagram of MB12

straightforward. Two middle bits in each codeword correspond to data bits. MB code is also known
as WACX [2].

MB34 has four states, implying a yet fairly low implementation complexity. As seen from the �gure,

both DSV and ASV are four. At each state, there are exactly nine (= 23) transition paths. Four of
them are self-returning. Each of the two neighboring states terminate two paths. The farthest state
terminates the last path. It is left to the reader to construct a codebook and the associated state
diagram.

Fig. 4. MB24. (a)BUDA stack (b)State diagram

One notable aspect of all the codes introduced so far, MB12, MB24, and MB34, is that all the
possible transition paths are fully exploited to construct a code. They are, in a sense, complete codes.

For some other codes, however, there may be some valid transition paths which are not utilized in
code mappings. These extra transition paths can be utilized in securing control symbols often required
in practical physical layer designs.

The power spectral densities of MB12, MB24, and MB34 can be sketched like in Fig. 6. MB12
and MB 24 are in fact equivalent codes in all practical purposes. They have the same power spectral
envelopes, the same DSV and ASV values, etc. In comparison with NRZ, they have the same main
lobe width but o�ers extra DC-free and RLL property. MB34 is a further improvement over the two
in terms of the main lobe bandwidth with but a small added codec complexity.



Fig. 5. MB34 BUDA stack

Fig. 6. Power spectral sketches for some simple binary codes

V. Code Design Procedural Steps

The design steps of DC-free binary MB line codes can be summarized as follows:

1. Select the number of input bits m and the number of output bits n for an (m;n) block code. It
turns out that n should be an even number; a binary MB code of an odd value of n is found to be

impossible. m preferably is n� 1 for a minimal redundancy. It may turn out that code design with
such a redundancy is not possible. In that case, m equal to n� 2 will be taken.
2. Accumulate an enough number of BUDA cells to form a BUDA stack for derivation of the state
diagram. Note that stacking cells horizontally would increase the DSV value. Doing so vertically

would increase the ASV value. Therefore, where to add additionally needed cells should depend on
the design preference on the two spectral properties.
3. Pick one node as a state. And try to secure at least 2m exit paths, each being n-hop long. Pin
down the terminating node of each path as another state.
4. Start with a new state and do the same as in the previous step. Try to terminate paths on already



existing state nodes and try not to generate new states as far as possible.
5. If it turns out that the stack needs to be expanded to complete the state diagram, add more cells
to the stack either horizontally or vertically as appropriate.
6. Try to end up with as small a number of states as possible with all transition paths terminating
on one of the arranged states. If this trial succeeds, then the stack design is complete.

7. At each state, arrange the mappings from inputm-bit combinations to output n-bit combinations.
The result is the state transition table or codebook. Try to use the same mapping as far as possible
across many or all states to reduce implementation complexity. This will also tend to simplify the
decoding rule.

8. If necessary, plot the power spectra of the coded sequence with varying input Mark probability,
and choose the mapping that would generate most desirable power spectral properties. Some of the
criteria for desirable power spectral properties might be the smoothness of the spectral envelope
with little spectral spikes and the symmetry of the spectral envelope across the frequency band of

interest.
9. If all these steps are done successfully, then the code design itself is done with success.

VI. MB810

We designed a MB810 code following the steps summarized in the previous section. The resultant
BUDA stack diagram is shown in Fig. 7. We ended up with 12 states. Both DSV and ASV are 7. There

are at least 256(= 28) exit paths out of each state. Each such path is 10 hops long and terminates on
one of the other states. In studying the BUDA stack, it is to be recalled that each right-arrowed branch
represents an output logic symbol '1'(physical symbol +1/2) while each left-arrowed one represents an
output logic symbol '0'physical symbol -1/2.

Fig. 7. BUDA stack of MB810

The state diagram is too complex to draw, but a collapsed version is depicted in Fig. 8. State



transitions are mostly limited to adjacent neighboring states. This is but our design choice. By
doing so, more mapping combinations may apply in the same way to more states, resulting in simpler
coder and decoder logics. It is also to be noted that not all transitions are among neighboring states.
Although not shown in the simpli�ed state diagram provided, a few of the transition paths are among
states farther apart.

There are more than 256 paths out of each state. Therefore, it is easy to provide for control symbols
by use of these extra paths.

Fig. 8. Condensed state diagram of MB810

VII. Performance

The measured power spectrum of MB810 is shown in Fig. 9. Fig. 9(a) is the spectrum with square

pulse shaping. The line rate was set to 10Gbps, the input data rate then being 8Gbps1. A spectral null
at 5GHz, the Nyquist frequency, is apparent. There exists also a null at 0Hz, which is not shown in
the �gure. The spike at 10GHz is due to imperfect square pulse shaping, i.e., asymmetric duty cycle.

Fig. 9. MB810 power spectrum (a) Un�ltered (b) Filtered by a 5-th order Chebyshev LPF of a cuto� at the Nyquist
frequency.

One might be curious to know how MB codes will behave in terms of performance if they are �ltered
severely above the Nyquist frequency. If they should operate successfully under this condition, it
would mean not only spectral saving but also reduction of many undesirable anomalies due to spectral

interference encountered in very high-speed DWDM optical transmission.

We passed the MB810 coded stream through a 5-th order Chebyshev LPF with a cuto� at 5GHz, the

result of which is shown in Fig. 9(b). A better way to check the consequence of such a band limiting
may be to observe the resultant eye diagram shown in Fig. 10. The left one is the eye pattern at the
outlet of the transmitter whereas the right one is that observed after �ltering. It is seen that the eye
pattern of the �ltered stream is fairly good, suggesting a stable and near error-free reception.

1The power spectrum analyzer available to us could measure only up to 12GHz. With a 10Gbps input data rate and so a line
rate of 12.5GHz, a wider spectral capability would be required



Fig. 10. Eye pattern of MB810-coded signal (a) Transmit output. (b) Filtered by 5GHz LPF.

We did not perform extensive BER test in this experimental con�guration yet, which would neces-

sarily require a large amount of time, but a similar experiment performed with MB34 code as reported
in our presentation at the July 99 meeting veri�es that BER as low as 10E-12 can be achieved from
SMF transmission over a typical long-haul optical span of 250km.

VIII. Implementation

A straightforward way of implementing a block code is to do table look up, which would require
memory access. However, a simple trick also enables implementation with only some mixture of
combinatorial and sequential logics.
More di�culty in implementing a MB810 codec for 10GbE is the logic speed. It is practically

impossible to implement the logic directly in the 10GHz range. A novel way of implementing the codec

is to do the basic logic at a hundred times lower speed and then to execute double 10:1 multiplexing.
Fig. 11 depicts the idea we have adopted in implementing a MB810 coder. Ten coders work in

parallel. Each coder is fed a byte. Let us denote each byte in sequence by a, b, ..., j and each output
10-bit word by A, B, ..., J. In order to work in parallel, the state transition information propagates

from one coder to another in a sequential way and that at the earliest possible timing. The input byte
clock is 125MHz. Hence the aggregate input bit rate is 10Gbps(= 125M x 8) and the aggregate output
rate is 12.5Gbps(= 125M x 10).
Outputs of ten coders are bit-wise multiplexed by ten parallel MUX's; the �rst MUX collects the

�rst bit of each codeword, the second MUX collects the second bit of each codeword, and so forth. In
other words, the �rst MUX outputs A0, B0, ..., J0 in series, the second MUX does A1, B1, C1, ...,
J1, etc. The output clock rate of these �rst-stage MUX's is 1.25GHz, ten time faster than the basic
coders.
Then the second-stage MUX bit-wise multiplexes outputs of the ten �rst-stage MUX's. The resultant

output bit sequence runs as A0, A1, ..., A9, B0, B1, ..., B9, ..., J0, J1, ..., J9 and so forth. Interpreting
the output by codeword, this corresponds to ABCDEFGHIJ..., which is the correct order of the output
codewords as implied by the front-end basic coders con�gured in Fig 11.
The output clock rate of the second MUX is 12.5GHz, resulting in the 12.5Gbps line rate as designed.

IX. Conclusion

This White Paper presented facts about MB810, from theoretical background to implementation.
Experimental results, though not thoroughly extensive and complete yet, strongly support the theo-
retical assertions, i.e, signi�cant improvement in bandwidth saving over other non-MB line codes.

The real message of this White Paper is that, in achieving the right speed of 10GbE, we don't have
to abandon binary block coding which was successfully used in GbE. Binary block coding has many
advantages over others; better SNR, self-clocking due to RLL, error monitoring capability, availability
of extra control symbols, etc. Persistent use of binary block coding is possible by MB block coding as
exempli�ed by the proposed MB810.



Fig. 11. Implementation schematic of the MB810 coder

You don't have to switch to NRZ. MB810 is even more bandwidth e�cient than NRZ. And that,
NRZ has many disadvantages. It is not DC-free. It is not RLL; scrambling never gives a tight upper
bound to RLL and is just a statistical improvement, merely a naive resort to probabilistic luck.

You don't have to run the risk of multilevel signaling, like PAM5, over fairly nonlinear optical
transmission systems. The bandwidth e�ciency of MB810 is even comparable to PAM5. PAM5 has to
su�er many shortcomings. It su�ers from reduced SNR. It has to painfully combat against the inherent
nonlinearity of optical devices. Successful multilevel optical signaling with su�cient reception SNR,

and that as many as �ve levels at the Gbps speed, has never been reported. This is too much a risk
at the current technology.
Stay with binary block coding and do away with the bandwidth concern by adopting a MB code

like MB810.

References

[1] D. Y. Kim and Jae kyoon Kim. A condition for stable minimum-bandwidth line codes. IEEE Trans. Commun., COM-
33(2):152{157, February 1985.

[2] M. Y. Levy and S. R. Surie. A new coding technique for digital subscriber lines: Wacx. Rec. ISSLS, pages 247{251, 1984.


