Industrial Automation Bit Error Rate

David D. Brandt Rockwell Automation

Purpose

- The purpose of this presentation is to show a calculation of the required bit error rate for an Ethernet PHY utilized in industrial automation
 - Random bit errors are assumed
 - Bit error rate is after correction
 - Considered detectable
 - The frame is discarded
 - Burst errors due to interference are not considered herein

Result of lost connections

 Automation must maintain knowledge of the state of the system

- Through periodic updates on a "connection"

- If any connection is lost, a fault may occur:
 - Human intervention may be required
 - Unjam equipment
 - Rerun safety procedures
 - Product may be lost

Example Scenario

- A large plant has 100 k networked devices
- Each device has 2 connections, one to receive output values and one to report input values
- Each connection sends an update every 10 ms
- Each message averages 125 B (1000 bits)
- Control protocols use oversampling techniques to tolerate message loss
 - With a timeout of 3x the update period, each connection can tolerate up to 2 lost messages in a row
- It is acceptable to lose one connection per year in a plant due to random packet loss

Definitions

Parameter	Description	Units
D	Ethernet devices in a facility	
С	Average connections per device	
R	Update Rate	packets/s
L	Packet Length	bits
Ν	Maximum packets lost in a row	
Т	Connection Loss Interval	S
CER	Connection Error Rate	
PER	Packet Error Rate	
BER	Bit Error Rate	

Connection Error Rate

- Each device has multiple connections (at least one to and from the device)
- If there are D devices in a plant and they average C connections per device, the acceptable connection error rate (CER) over an interval T is:

➤ CER = 1/(D*C)

Packet Error Rate

- In an interval T, each connection transmits a number of packets P at a rate R, then P = R*T
- If the probability of a single packet loss is PER, the probability of N lost in a row (a connection loss) is PER^N
- In a long stream of packets, the number of combinations of N lost in a row (for small N) ~= the number of packets in the stream
- The interval T, the connection error rate CER = number of packets in T * probability of N lost in a row
 - \succ CER = P*PER^N
 - ➢ PER = (CER/(R*T))^(1/N)

Bit Error Rate

For a packet length L:
> BER = PER/L
> BER = ((CER/(R*T))^(1/N))/L

Use Cases

		C1	C2	С3	C4	C5
		Unreasonable	PA, FA1	FA2	FA3	FA Safety
		Extreme size	Extreme size	Extreme size	Moderate size	Small size
		Extreme	Low	High	Moderate	Extreme
Parameter	Descriptions	performance	performance	performance	performance	performance
D	Ethernet devices in a facility	100000	100000	100000	10000	1000
С	Average connections per device	2	2	2	2	2
R	Update Rate (packets/s)	100	10	100	50	100
L	Packet Length (bits)	1000	1000	1000	1000	1000
Ν	Maximum packets lost in a row	2	3	3	3	2
Т	Connection Loss Interval (s)	3.2E+07	3.2E+07	3.2E+07	3.2E+07	3.2E+07
CER	Connection Error Rate	5.0E-06	5.0E-06	5.0E-06	5.0E-05	5.0E-04
PER	Packet Error Rate	4.0E-08	2.5E-05	1.2E-05	3.2E-05	4.0E-07
BER	Bit Error Rate	4.0E-11	2.5E-08	1.2E-08	3.2E-08	4.0E-10

Conclusions

- Adequate Automation Protocol oversampling is necessary
- Use cases suggest BER should at least be better than 10⁻⁸
- Automation devices are currently operating in large volume using 10/100M

– The same 10⁻⁹ BER objective is appropriate