10SPE Study Group
 Automotive Channel for Multi-Drop

Stefan Buntz, Daimler AG

supporters

Motiovation

- Provide information to the 10SPE study group regarding the automotive channel for multi-drop (shared medium).
- Provide information how multi-drop (shared medium) channels could be modeled.

methodology

- Cable modeling by ADS CLINP-model of UTP cable
- MonteCarlo Analysis (100 iterations) of length of individual topology elements to get s-Parameters for various topologies
- Point-to-point link (15m)* (no MonteCarlo Simulation, just for reference)
- Linear topology (15m)
- Linear topology (30m)
- Linear topology with long stubs
- Star topology
- Double Star topology
- Methodology does not take into account splices, inline connectors, etc. (Assumption is their influence can be neglected for multidrop topologies)

Cable modeling with ADS CLINP

- measurement of a „typical" UTP cable (15m) at room temperature acc. to OPEN Alliance test specification (TC2)

- Fitting of CLINP parameters
- $\mathrm{Ae}=0,015 \mathrm{~dB} / \mathrm{m} @ 5 \mathrm{MHz}$
$-\mathrm{Ao}=0.068 \mathrm{~dB} / \mathrm{m} @ 5 \mathrm{MHz}$
$-\mathrm{Ze}=512 \Omega$
$-Z o=55 \Omega$
- $K e=1,3$
- $K o=2,8$
$(Z d=100 \Omega, Z c=25 \Omega)$

fitting results (=15m point-to-point channel)

Measurement

Simulation CLINP

- ~5dB attenuation at 100 MHz for differential signal

- <20dB Return Loss
- Phase is constant:

Modelling of various topologies with CLINP

- Linear topology max. 15m:

Linear topology 15m (max. lengths)

Linear topology 15m (MonteCarlo)

Modelling of various topologies with CLINP

- Linear topology max 30m:

- Overall length is limited to 30 m ($6 \times 5 \mathrm{~m}$)
- Each stub is max. 20 cm (\sim trace on PCB)

Each node is terminated with $\mathrm{Zd}=100 \Omega$ and $\mathrm{Zc}=25 \Omega$ in the simulation!

Linear topology 30m (max lengths)

Linear topology 30m (MonteCarlo)

Modelling of various topologies with CLINP

- Linear topology with stubs:

I1 to I6: [10...2500]mm
Istub1 and Istub5: [1...2500]mm
Istub2 to Istub4: [1...2500]mm

- Overall length is limited to $15 \mathrm{~m}(6 \times 2,5 \mathrm{~m})$
- Each stub is max. $2,5 \mathrm{~m}$

Each node is terminated with $\mathrm{Zd}=100 \Omega$ and $\mathrm{Zc}=25 \Omega$ in the simulation!

Bus with stubs max. 15m (max lengths)

Bus with stubs max. 15m (MonteCarlo)

Modelling of various topologies with CLINP

- Linear topology with long stubs:

I1 to I6: [10...5000]mm
Istub1 and Istub5: [1...5000]mm
Istub2 to Istub4: [1...10000]mm

- Overall length is limited to 30 m ($6 \times 5 \mathrm{~m}$)
- Each stub is max. 10 m

Each node is terminated with $\mathrm{Zd}=100 \Omega$ and $\mathrm{Zc}=25 \Omega$ in the simulation!

Bus with long stubs max. 30m (max length)

Bus with long stubs max. 30m (MonteCarlo)

Modelling of various topologies with CLINP

- topology with 1 star:

Each node is terminated with $\mathrm{Zd}=100 \Omega$ and $\mathrm{Zc}=25 \Omega$ in the simulation!

Bus with 1 star (max length)

Bus with 1 star (MonteCarlo)

Modelling of various topologies with CLINP

- topology with 1 star:

[^0]- Overall length is limited to $21 \mathrm{~m}(2 \times 8 m+5 m)$
- Each stub is max. 8 m

Each node is terminated with $\mathrm{Zd}=100 \Omega$ and $\mathrm{Zc}=25 \Omega$ in the simulation!

Bus with 2 stars (max length)

Bus with 2 stars (MonteCarlo)

conclusion

- Methodology how to model channels has been provided.
- Simulation terminations are $Z_{\text {diff }}=100 \Omega / Z_{\text {com }}=25 \Omega$ (correlation to potential measurement setup) however real network terminations are potentially high impedance (which is preffered).
- Various multi-drop channels and their characteristics have been shown.
- Final channel requirements from automotive (max. length, max. nodes, max. stub length or max. \# stars) have to be discussed/provided by automotive OEMs.
\rightarrow This presentation shows exemplary topologies
- Potential further MonteCarlo elements (e.g. Impedance variations of topology elements) are not considered here

[^0]: I1 to I6: [10...2500]mm
 Istub1 and Istub5: [1...8000]mm
 Istub2 to Istub4: [1...8000]mm

