The Environmental

Channel Specifications

- Long-reach communication mode (1000 m)
- Shorter-reach (and intrinsically safe) communication mode (200 m)
- Channel Model (including connectors)
 - Frequency dependent
 - Maximum possible insertion loss within communication frequency range
 - Maximum possible return loss within communication frequency range
- Noise Models and Parameters
 - Crosstalk between signal lines and power/signal lines in automotive and industrial environments
 - Change of noise environment over time (e. g. when switching different loads, e. g. motors, on and off)
 - AWGN and in-band disturbers should come from the crosstalk and EMI models.
 - Duration and behavior of impulse noise events
 - Supply disturbance signature (in-band, out-band)
 - Maximum allowed in-band ripple voltage (frequency range, peak-to-peak values); Maximum allowed out-band ripple voltage (frequency range, peak-topeak values, ramp rate outside the in-band frequency range, e.g. 20 dB/decade)
 - Maximum allowed change rate in current consumption (e. g. 10 mA/ms) of the device without disturbing communication
 - Startup behavior of a device (peak current, additional startup current, continuous current) to support device hot plugging within a daisy-chain
 - Link impulse noise tolerance
- Noise emission limits to meet EMC regulations

Design Evaluation

- Design Details
 - Line coding
 - Signal amplitudes (inc. trim capability)
 - Signal frequency range
 - Symbol synchronization
 - Signal forming
 - Termination
- Powering options and flexibility
- Power dissipation
 - A consideration affecting how many devices can be used for a constrained power infrastructure
 - Power down modes and energy efficiency
- Echo cancellation specification
 - Maximum allowed return loss
 - Linearity requirements
- Diagnostics implementation (what, how, when)
- Link-up time
- Latency
 - Constant latency
 - Latency Jitter
- Auto-negotiation