Path to a baseline proposal for copper and backplane PMD clauses

Adee Ran Intel October 2014

Introduction

- This presentation aims at laying out the required components of a cable/backplane PMDs baseline proposal:
 - Suggested editorial structure
 - Technical components that require some work
 - Choices that do not seem obvious
- The three objectives accepted by the study group in the September interim serve as the foundation:
- Define a single-lane 25 Gb/s PHY for operation over a printed circuit board backplane consistent with channels specified in IEEE Std 802.3bj-2014 Clause 93
- Define a single-lane 25 Gb/s PHY for operation over links consistent with copper twin axial cables, with lengths
 up to at least 3m
- Define a single-lane 25 Gb/s PHY for operation over links consistent with copper twin axial cables, with lengths
 up to at least 5m

General ideas

- Assume a new clause will be created for a single-lane copper cable PMD
 - Refer back to clause 92 wherever appropriate
- Assume a new clause will be created for a single-lane backplane PMD
 - Refer back to clause 93 wherever appropriate
- Share structure and content between the backplane and cable PMD clauses where possible
- Possible new concepts for the cable PMD:
 - More than one PMD "class" (exact definition has to be decided), so multiple electrical specifications
 - More than one loss budget, so multiple channel constructions
 - Choice of using FEC, possibly two FEC types, possibly different PCS encodings
 - Choice of MDIs

Note: "class" used here temporarily until we decide on nomenclature (type, subtype, optional feature, or combinations)

General structure – copper cable clause

Subclauses of clause 92 (**Boldface text** means a possibly non-obvious change; strikethrough text means subclause can be omitted)

- 1. Overview
- 2. PMD service interface
- 3. PCS requirements for AN
- 4. Delay constraints
- 5. Skew constraints
- 6. PMD MDIO function mapping
- 7. PMD functional specifications
- 8. **PMD electrical characteristics**
- 9. Channel characteristics
- **10. Cable assembly characteristics**
- 11. Test fixtures
- 12. MDI specifications
- 13. Environmental specifications
- 14. PICS

Details of possible non-trivial changes

PCS requirements for AN

- AN determines PHY choice and FEC encoding (which may in turn affect PCS behavior)
- If the PHY includes an AUI, in order to communicate AN PHY choice towards the FEC and PCS, some management registers may be required (this is actually a requirement for AN)

PMD functional specifications

- · A possible way to determine use of FEC is using PMD training
- If we choose this, operation over a 25G-AUI-C2C would also require a way to communicate this towards the FEC and PCS (variables, management registers)

PMD electrical characteristics

Several sets of specifications

Channel characteristics + Cable assembly characteristics

- In 802.3bj, channel characteristics subclause (92.9) has only one paragraph; it could be merged with cable assembly characteristics (92.10) to a single subclause
- · Different PMD combinations create several cable types, each has its own set of parameters

Test fixtures

· Could be moved to an annex, and shared with 25G AUI

MDI specifications

- New single-lane MDI
- Possibly support 4-lane MDIs from clause 92 as well
- · We may also choose to address breakout cables

General structure – backplane clause

Subclauses of clause 93 (**Boldface text** means a likely non-obvious change; strikethrough text means subclause can be omitted)

- 1. Overview
- 2. PMD service interface
- 3. PCS requirements for AN
- 4. Delay constraints
- 5. Skew constraints
- 6. PMD MDIO function mapping
- 7. PMD functional specifications
- 8. PMD electrical characteristics
- 9. Channel characteristics
- 10. Environmental specifications
- 11. PICS

Copper cable clause work can be re-used; no additional items

More details on loss budgets for cable

Two loss budget divisions were discussed at length in the SG:

- 1. 5 meter cable reach: keeping mandatory RS-FEC, PMD electrical specifications and COM parameters based on clause 92
- 2. 3 meter cable reach
 - a. Keeping PMD electrical specifications similar to clause 92, and using the lower loss to allow operation without FEC (or with clause 74 FEC)
 - b. Keeping RS-FEC, and using the lower loss for relief of PMD electrical specifications, allowing higher loss on host PCB
- Also mentioned: reduced host PCB loss for asymmetric allocation

• We may have n=2 or n=3 PMD classes, each with its own specifications

- This would create $\frac{n(n+1)}{2}$ combinations of two PMDs (\rightarrow cable specs and tests)
- Two PMDs → three possible combinations
- Three PMDs → six possible combinations
- May also imply multiple 25G-AUI-C2M specs

Consider methods to enable interoperability between PMDs of different classes

 Spans multiple clauses: PMD, AN, PCS, RS-FEC (and possibly base-R FEC), MDIO, management

TX specs for different PMD classes

- All PMD and cable classes use the same test point definitions
- Transmitter characteristics at TP2 will be different per PMD class
 - Can be summarized in a table like 92-6, but with multiple columns
 - Return losses, specified as frequency masks in 92.8.3.2 – 92.8.3.4, may vary
 - Transmitter output waveform linear fit procedure (92.8.3.5.1) may use separate values of N_p per class; specified limits will likely vary
 - Recommended TP0-TP2 and TP3-TP5 (92.8.3.6) will be different per class.
 - Consider moving these to an annex (note that recommended TP0-TP1 and TP4-TP5 already appear in an annex, which the 25G-AUI-C2M can re-use)
 - SNDR parameters and/or specified limit (92.8.3.7) may vary

Parameter	Subclause reference	Value	Units
Differential peak-to-peak output voltage (max.) with Tx disabled	92.8.3.1	35	mV
DC common-mode voltage (max.)	92.8.3.1	1.9	v
AC common-mode output voltage, v _{cmi} (max., RMS)	92.8.3.1	30	mV
Differential peak-to-peak voltage, v _{di} (max.)	92.8.3.1	1200	mV
Differential output return loss (min.)	92.8.3.2	See Equation (92-1)	dB
Common-mode to differential mode output return loss (min.)	92.8.3.3	See Equation (92-2)	dB
Common-mode to common-mode output return loss (min.)	92.8.3.4	See Equation (92-3)	dB
Transmitter steady-state voltage, $v_f(min.)$ Transmitter steady-state voltage, $v_f(max.)$	92.8.3.5.2	0.34 0.6	v
Linear fit pulse peak (min.)	92.8.3.5.2	$0.45 \times v_f$	v
Transmitted waveform abs coefficient step size (min.) abs coefficient step size (max.) minimum precursor full-scale ratio minimum post cursor full-scale ratio	92.8.3.5.4 92.8.3.5.4 92.8.3.5.5 92.8.3.5.5	0.0083 0.05 1.54 4	
Signal-to-noise-and-distortion ratio (min.)	92.8.3.7	26	dB
Output jitter (max.) Even-odd jitter, peak-to-peak Effective bounded uncorrelated jitter, peak-to-peak Effective total uncorrelated jitter, peak-to-peak	92.8.3.8.1 92.8.3.8.2 92.8.3.8.2	0.035 0.1 0.18	UI UI UI
Signaling rate, per lane	92.8.3.9	25.78125±100 ppm	GBd
Unit interval nominal	92.8.3.9	38.787879	ps

Table 92–6—Transmitter characteristics at TP2 summary

RX specs for different PMD classes

- Receiver characteristics that may be different per PMD class:
 - Return losses (92.8.4.2 92.8.4.3)
 - Interference tolerance test channel parameters (92.8.4.4):
 - For a PMD with clause 92 loss budget:
 - Test with/without RS-FEC
 - For each of the above, test with the shortest and the longest cable
 - Total 4 test cases
 - For a PMD with higher loss budget:
 - Test only with RS-FEC, test with the shortest and the longest cable
 - Total 2 test cases

Cable specs

- Each cable type should meet specs matched with all PMD combinations that it supports
- Maximum insertion loss (92.10.2) will likely be different per class, return and conversion loss masks (92.10.3 – 92.10.6) may also vary
- Signal paths used for calculating COM (92.10.7.1.1) will be different
- See also diminico_25GE_01_1114

Choices we have to make

1. PMD classes for the copper cable PHY

- How many?
- Nomenclature class, port, option? Separate PHYs? Some other term?

Note, detailed parameters of the PMD classes may be left as TBD for now

- Cable classes that can be used with each combination of PMD classes
 - All possible combinations, or limit to a subset (e.g. 3m and 5m only)?
 - Should we add nomenclature for these things?

Note, detailed parameters of the cable classes may be left as TBD for now

3. Which MDIs? Breakout cables?

- 4. FEC choice, interoperability, negotiation
 - Are "with FEC" and "without FEC" considered as separate PHYs? or is it the same PHY, with one mandatory mode and one optional mode?
 - This will affect the cable PMD clause, even if most of the text resides in other clauses

Next steps

- Straw polls (during the November plenary or using SurveyMonkey afterwards) to sense which choices can build consensus
- Assuming we turn into a task force following the plenary meeting:
 - Work on a consensus baseline proposal based on the results (ad hoc work)
 - Ideally, adopt a baseline at the January interim

BACKUP

Combinations of 25GBASE-CR classes and implied cable reaches

Different combinations of two devices can result in different reaches being supported. The table may serve as an example.

Note: the titles and numbers in this table are for illustration only. They are practically TBD.

Host A Host B	"Higher loss"	Clause 92 spec	"Lower loss"
"Higher loss"	RS-FEC: 3 m	RS-FEC: ≥3 m	RS-FEC: 5 m? no FEC: 3 m?
Clause 92 spec	RS-FEC: ≥3 m	RS-FEC: 5 m no FEC: 3 m	RS-FEC: ≥5 m no FEC: ≥3 m
"Lower loss"	RS-FEC: 5 m? no FEC: 3 m?	RS-FEC: ≥5 m no FEC: ≥3 m	no FEC: ≥5 m

Highlighted cells could possibly support longer reaches, but could also be merged with higher-loss combinations, in order to limit the number of cable specifications.