25G Architecture Consensus IEEE 802.3 25 GB/S Study Group

Summary of Submitted Options Meeting Objectives & Supporting Technology Feasibility

Mark Lutkowitz, fibeReality, LLC

25GbE PHY Justification

- Spec reuse of 802.3-2012, 802.3bj-2014, & P802.3bm
 - Along with resulting implemented solutions
- Assumed layer architecture is similar to those of 10G/ 100G
 - RS, PCS, FEC, PMA, AN, & management specs likely to be based on specs of one of those rates or both
 - PMD, MDI & Medium specs probably based on 4x25 100G specifications
- 802.3 25G consistent with 802.3bj specs on crosstalk paths, test points/fixtures, channel loss budgets, cable assemblies, & COMS

Use of Only 10GbE 64b/66b PCS

- Leverage 40/100GBASE-R
 - But run at 25.78125G
- No alignment markers
- 64b alignment for encoding
 - Taking advantage of Clause 82
- Employ 256B/257B transcoding
 - Defined in 802.3bj
- Always RS-FEC encoded data
 - Sync up FEC correctable match with transcoding
 - Bit slips until n FEC correctable blocks discovered
 - Loses lock after m FEC blocks are uncorrectable
 - Similar to Clause 74 KR FEC

Two Other Options with Only 64b/66b

- One choice is using 10GBASE-R
 - 32b alignment for encoding
 - Includes all other specs of first choice
- Third option is with 40GBASE-R
 - Again, operating at 25.78125G
 - Single alignment marker
 - Could be single group of five or one PCS lane
 - 64b alignment for coding
 - Same transcoding & encoded data as others
 - No remapping of AMs required
 - Alignment markers permit syncing up similar to 100G

25GbE Extension Sublayer/Interface Options

- In cases of PHY implementations across 2 or more devices
 - Choice I
 - Use PMA service interface extension
 - Such as XLAUI & CDAUI
 - Choice II
 - Use an XXVMII extension service interface
 - Similar to the XAUI spec for 10G
 - Spec source from Clause 46 or Clause 81
 - Choice III
 - Combo of first two options

25GbE FEC & Latency Options

- RS-FEC encoding/decoding mandatory
 - Ensures interoperability
 - Introduced in 802.3bj & adopted for P802.3bm
- Clause 74 is still an option
 - Latency-sensitive apps with good signal integrity
- Stronger protection with even lower latency than Clause 74 FEC achieved using transcoding & a new shorter, RS-FEC code
 - But needs at least 1 code word for error marking to be MTTFPA-safe
- 66b encoded data without encoding
 - Simplification for ultra-low latency applications
 - Yet, no error counters
 - Unless AMs and BIP introduced

25G CR Copper PMD

- Cable lengths optimized up to 5m
 - Electrical specs same as 100G CR4
 - 25G "single lane" version of 100G KR4 RS-FEC
 - Clause 91
- Cable lengths optimized up to 3m
 - No need for FEC & its latency
- Loss budget same as 100G CR4
 - Potential reduction with shorter cables
 - MTTFPA concern from DFE burst errors without FEC
 - » Use COM procedure to verify acceptability of BER & MTTFPA
 - » Use 10G KR FEC to correct DFE burst errors
 - Latency 82 ns

END