Support for an objective of 25 Gb/s over MMF Draft 0.1e

September 2014, Ottawa, Canada (team of many)

Contributors

- Alan Flatman, LAN Technologies
- Jonathan King, Finisar
- Scott Kipp, Brocade
- Paul Kolesar, Commscope
- John Petrilla, Avago Technologies

Supporters

- Chris Cole, Finisar
- Jack Jewell, independent
- Robert Lingle, OFS
- •
- •
- •

Contents

- Why include 25Gb/s over MMF in this project ?
 - Server designs, rack space and switch capacity
 - Middle-of-Row (MoR), End-of-Row (EoR), and Cabinet-to-cabinet
 - 'Home run' architectures direct connect from server to core, eg large enterprise environments
 - Structured cabling
 - These server interconnect architectures represent a significant portion of market that is not addressed by a 5 m reach PMD
 - Ideally, optics and copper would plug into same socket (e.g. SFP28, QSFP)
 - Common electrical connector, compatible TP1, TP4 spec's
- Proposed 25Gb/s over MMF objective
- How adding an optical objective augments the 5 Criteria responses
 - Broad Market Potential
 - Compatibility
 - Distinct identity
 - Technical feasibility
 - Low technical risk, drawing on 32GFC and 100GBASE-SR4
 - Economic feasibility

Why include 25Gb/s over MMF in this project?

- Original CFI included just Top-of-Rack (ToR) server-to-switch architectures
 - ToR is not sufficient for all applications
- Middle-of-Row (MoR) and End-of-Row (EoR) architectures include ~40% of total server-to-switch links, representing a very substantial market potential
 - Not addressed with a 5 m reach cable.
 - Some of these links may be addressed with AOCs.(spell out)
 - Market resistance to AOCs > 10 m (for pragmatic reasons).
 - A pluggable optic is needed for EoR and MoR architectures.
- The development of 32G Fibre Channel optical modules and consequent market interest shows that economic feasibility is achievable.
- An objective for 25Gb/s over MMF significantly broadens the market potential of the 25G Ethernet project.

Server Designs

- Microservers ARM Servers
- Blade Servers
- 1/2U Servers
- 1U Servers
- 2U Servers
- 4-12U Servers
- Rack and multi-rack Servers

8U Storage Server

Rack Space

	Max Servers / 40RU
Micro-Server	>100
Blade Server	>100
1/2U Server	80
1U Server	40
2U Server	20
4U Server	10
8U Server	5
12U Server	3
Mainframe	<1

25GbE Switches

 Switch ASICs are increasing speed from 10GbE to 25GbE and more than doubling the port counts from 64 ports to 128+ ports

64 10GbE port ASIC enables 48 SFP+ and 4 QSFP+ 620Gb/s of Throughput

128 25GbE port ASIC enables32 QSFP+3.2 Tb/s of Throughput

10GbE Switch Designs

Blade Switches

4 SFP+

1/2U Switches

12 QSFP+ = 48 25GbE

64 SFP+

36 QSFP+ = 144 25GbE

2U Switches

96 SFP+

• 4-12U Modular Switches

216 QSFP+ = 864 25GbE

1U Server ToR Designs

ToR, MoR, EoR

ToR (up to 5 m)

MoR

(up to 15 m)

(up to 50 m)

Addressed by 25Gb/s copper

Not addressed by 25Gb/s copper

1U Server EoR Designs

216 QSFP+ = 864 25GbE Each switch could support 800 servers with 1.6Tb/s of uplinks

This rack of modular switches would support 2,400 servers

- A home run is a server connect architecture where a server is connected straight into the core of the network
 - Common for storage servers or NAS that shares massive files – feedback to EA at HPC'13
 - Mainframes and large enterprise servers may connect straight into the core
 - These links need high speed
- Used when servers, storage and switches are consolidated into different areas
- Usually associated with structured cabling

TIA-942 – Data Center Cabling and Design

- TIA-942 Telecommunication
 s Infrastructure for
 Data Centers
 defines:
- MDA (Main Distribution Area) that fans out to
- HDAs (Horizontal Distribution Areas)

New Mega Data Center Design

- Most new data centers are being designed with a Pod (or Cell) Architecture
- Pods usually 15-20,000 sq ft
- HDA (Horizontal Distribution Area) is where distribution switches are located
- The Main Distribution Area (MDA) interconnect PODs and connects to the WAN and telecom networks

300,000 sq ft new data center

500'

POD Architecture

- 15,000 sq ft POD
- Up to 5,000 servers / POD
- 512 Racks possible
 - 32 Rows of racks
 - Each row has 16 racks
- Horizontal
 Distribution Area
 (HDA) connects all of the racks

200'

Home Runs

- Home Runs go
 - From select servers
 - To HDA
 - Patchcord withinHDA
 - To centralized Switch
- 100 meters required

Is this ethernet, and is it just 25G Is this a niche application

Structured cabling environment

Placeholder for Paul TIA 942

From "40GBASE-T advantages and use cases" (jiminez_3bq_01_0711.pdf, 802.3bq)

EoR is lower cost in some circumstances.

EoR link distributions

- Link lengths: ~85% > 5 m, ~ 90% < 50 m
 - From: *flatman_01_0911_NG100GOPTX.pdf*, reproduced with kind permission of Alan Flatman

ToR link distributions

- Includes cabinet-to-cabinet links
- Link lengths: ~30% > 5 m
 - From: *flatman_01_0911_NG100GOPTX.pdf*, reproduced with kind permission of Alan Flatman

Total server volumes: 40% EoR vs 60% ToR

- Relative volume inferred from total number of servers in small/med vs large/v.large data centers (?)
 - From flatman_01_0911_NG100GOPTX.pdf, used with kind permission of Alan Flatman

Flatman Data Centre Cabling Survey **Total Servers in US Enterprise Data Centres** ■ small ■ medium ■ large ■ very large | Source: IDC (2006) 100% 90% 60% large/very larg > summary presented to IEEE 802.3ba in Jan 2008 80% > www.ieee802.org/3/ba/jan08/flatman 01 0108 70% > 9 enterprise data centres from US, UK, Germany 60% > total data centre floor space = 715,000 square feet 50% small, medium, large, v. large sizes (IDC classes) 40% Flatman data good for EoR/centralised switching 30% > expected to continue for small/medium data centres 20% but now needs to take account of ToR switching & cabinet-to-cabinet links 10% > being deployed mainly in large/v.large data centres with much shorter server links than before 2003 2004 2005 2006 2007 2008

AOC length distribution and relative volumes

- Average AOC length < 10 m, 90% < 18 m
- Pluggable optics links exceed AOC volumes by ~ 3:1
- Add ref

Breakout bonus

?

Placeholder

Density advantage, 4x25 servers, across 3 or 4 racks feeding one 32 port QSFP switch

Economic Feasibility

Placeholder

Jiminez ppt?

Port utilization efficiency: Big switches need multiple racks of servers to be fully utilized

Electrical connector

Placeholder

Can use same as twin-ax MDI

Proposed objective

 Define a single-lane 25 Gb/s PHY for operation over MMF consistent with IEEE P802.3bm Clause 95

How 5 Criteria responses may be modified by a 25 Gb/s over MMF objective

Broad Market Potential

 An optical PHY utilizing a serial 25 Gb/s (1 x 25 Gb/s) electrical interface and optimized MMF interface will reduce cost, size and power for server interconnects in the data centers internet exchanges, co-location services, services provider and operator networks and provide a balance in cost between network equipment and attached stations.

Supporting material:

Other infrastructure, e.g. in support of End-of-Row (EoR) or Middle-of-Row (MoR) will accelerate deployment and enhance deployment of Top-of-Rack (ToR)

From page 8 of Call For Interest Consensus presentation, "The term "TOR" has become synonymous with server access switch, even if it is not located "top of rack" ", acknowledging that a 5 m reach may not be sufficient.

Where longer than 5 m reaches are not sufficient, reliance on active cable assemblies does not provide satisfactory support in structured-cable installations.

Existing form factors supporting multiple lanes of similar electrical and optical interfaces provide high port density options

many other examples ...

Compatibility

Inclusion of an objective for a single-lane 25 Gb/s PHY for operation over MMF is expected to have no specific Compatibility statement.

Distinct Identity

Each IEEE 802 LMSC standard shall have a distinct identity. To achieve this, each authorized project shall be:

- a) Substantially different from other IEEE 802 standards.
- b) One unique solution per problem (not two solutions to a problem).
- c) Easy for the document reader to select the relevant specification.
- d) Substantially different from other IEEE 802.3 specifications/solutions.
- There is no standard that supports Ethernet over duplex multimode fiber cabling at a data rate of 25Gb/s. The IEEE P802.3 project will define a single 25Gb/s PHY over multimode fiber.
- The proposed amendment to the existing IEEE 802.3 standard will be formatted as a new clause, making it easy for the reader to select the relevant specification.

Technical Feasibility

For a project to be authorized, it shall be able to show its technical feasibility. At a minimum, the proposed project shall show:

- a) Demonstrated system feasibility.
- b) Proven technology, reasonable testing.
- c) Confidence in reliability.
- Component and cabling vendors have presented data indicating that 25Gb/s operation over multimode fibre cabling is feasible with known techniques similar to those used in existing 32G-FiberChannel and 802.3bm standards. Presentations have provided analyses of PHY feasibility based on measurements of installed cabling and proposed new cabling types from TIA and ISO/IEC aimed at this application.
- Systems and infrastructure supporting Ethernet operation over multimode fiber cabling have been deployed by the hundreds of millions at speeds ranging from 10Mb/s to 10Gb/s. The proposed project will build on Ethernet component and system design experience and the broad knowledge base of Ethernet network operation.
- The reliability of Ethernet components and systems can be projected in the target environments with a high degree of confidence.

Economic Feasibility

- •The cost factors for Ethernet components and systems are well known.
- •Prior experience with optical modules for 100GBASE-SR4 (4 lanes at 25.78 GBd per lane) and 32GFC (1 lane at 28.05 GBd) indicate that the specifications developed by this project will entail a reasonable cost for the performance of a single-lane 25 Gb/s PHY for operation over MMF.

Thank you!