Support for an objective of 25 Gb/s over MMF Draft 0.2

September 2014, Ottawa, Canada (team of many)

Contributors

- Alan Flatman, LAN Technologies
- Jonathan King, Finisar
- Scott Kipp, Brocade
- Paul Kolesar, Commscope
- John Petrilla, Avago Technologies

Supporters

- Chris Cole, Finisar
- Jack Jewell, independent
- Robert Lingle, OFS
- •
- •
- •

Contents

- Why include 25Gb/s over MMF in this project ?
 - Server designs, rack space and switch capacity
 - Top-of-Rack (ToR), cabinet-to-cabinet, Middle-of-Row (MoR), and End-of-Row (EoR), server to switch architectures
 - ToR and EoR link length distributions
 - Estimated total server volumes, ToR vs EoR
 - These server interconnect architectures represent a significant portion of total market; they are not addressed by a 3 m reach PMD
- Broad Market Potential and Economic feasibility summaries
- Incremental developments needed to standardize 25 Gb/s over MMF
- Proposed 25Gb/s over MMF objective
- Summary of how an optical objective augments the 5 Criteria responses

Why include 25 Gb/s over MMF in this project?

- Original CFI was based on backplane and Top-of-Rack (ToR) server-toswitch architectures.
 - ToR is not sufficient for all applications
- Middle-of-Row (MoR) and End-of-Row (EoR) architectures include ~40% of total server-to-switch links, representing a very substantial market potential
 - Not addressed with a 3 m reach PHY.
 - 25GE CFI assumed links longer than 3 m may be addressed with Active Optical Cables (AOCs)
 - AOCs require a chip to module interface spec
 - Market resistance to AOCs > 10 m (for pragmatic reasons).
 - A pluggable optic is needed to support MoR and EoR architectures
 - The development of 32G Fibre Channel optical modules and consequent market interest shows that economic feasibility is achievable.
- An objective for 25Gb/s over MMF significantly broadens the market potential of the 25G Ethernet project.

Server and rack designs summary

- Server designs:
 - 2U to 1/2U 20 to 80 per rack
 - Micro servers >>100 per rack
- Switch designs:
 - Switches moving from 10Gb/s to 25Gb/s:
 - 42 SFP + 4x QSFP
 - 128 ports (32x QSFP)
 - Modular switches may connect to 1000's of servers over many tens of racks
- 1 switch can support multiple racks of servers
- A 25Gb/s MMF link has the reach to enable large switches connecting many racks of servers.
 - Efficient switch port utilization
 - Drives cabinet-to-cabinet, MoR and EoR data center architectures
 - A 3 m PHY doesn't address these.

ToR, MoR, EoR

ToR link distributions

- Includes cabinet-to-cabinet links
 - Note: slide 8 of CFI_01_0714, "The term "TOR" has become synonymous with server access switch, even if it is not located "top of rack", acknowledging that a 3 m reach may not be sufficient for all 'TOR' server to switch links.
- Link lengths: ~50% > 3 m
 - From: flatman_01_0911_NG100GOPTX.pdf, reproduced with kind permission of Alan Flatman

EoR link distributions

- Link lengths: ~90% > 3 m, ~ 90% < 50 m
 - From: flatman_01_0911_NG100GOPTX.pdf, reproduced with kind permission of Alan Flatman

http://www.ieee802.org/3/100GNGOPTX/public/sept11/flatman 01 0911 NG100GOPTX.pdf

Breakout

(Placeholder)

- 40GBASE-SR4: a significant early application has been the connection of four 10G servers to a switch.
- Definition of a PHY for 25Gb/s over MMF will allow similar topology for 100GBASE-SR4 - connection of four 25G servers to a switch
 - Four single 25Gb/s SFP28 port implementation or Quad 25Gb/s
 - QSFP28 breakout implementation possible
- Maximizes ports and bandwidth in switch faceplate for cabinet to cabinet MoR and EoR architectures

Total server volumes: 40% EoR vs 60% ToR

- Relative volume inferred from total number of servers in small/med vs large/v.large data centers (?)
 - From flatman_01_0911_NG100GOPTX.pdf, used with kind permission of Alan Flatman

Flatman Data Centre Cabling Survey **Total Servers in US Enterprise Data Centres** ■ small ■ medium ■ large ■ very large | Source: IDC (2006) 100% 90% 60% large/very larg > summary presented to IEEE 802.3ba in Jan 2008 80% > www.ieee802.org/3/ba/jan08/flatman 01 0108 70% > 9 enterprise data centres from US, UK, Germany 60% > total data centre floor space = 715,000 square feet 50% small, medium, large, v. large sizes (IDC classes) 40% Flatman data good for EoR/centralised switching 30% > expected to continue for small/medium data centres 20% but now needs to take account of ToR switching & cabinet-to-cabinet links 10% > being deployed mainly in large/v.large data centres with much shorter server links than before 2003 2004 2005 2006 2007 2008

Broad Market Potential

- A single-lane 25 Gb/s PHY for operation over MMF:
 - Enables optimization of switch port usage over broad range of server to switch architectures (cabinet to cabinet, MoR, EoR), which make up a substantial fraction of total server interconnects.
 - Support for structured-cable installations
 - Enables optimized port utilization of very high port count modular switches
 - Existing form factors (SFP and QSFP) supporting multiple lanes of similar electrical and optical interfaces to provide high port density options.

Economic Feasibility

- 25GBASE-SR will be lower cost than 40GBASE-SR4
 - 25GBASE-SR increases bit-rate/fiber
 - (vs 10GBASE-SR and 40GBASE-SR4)
- 25GEBASE-SR has the reach to enable higher port utilization efficiency for large modular switches:
 - Big switches need multiple racks of servers to be fully utilized – Cabinet to cabinet, MoR, EoR architectures
 - Not achievable with a 3 m PHY

Incremental work needed to define a PHY for 25Gb/s over MMF

Chip-to-module interface

- Needed for AOCs, and for pluggable optics.
- Rechnology re-use of 25Gb/s lane standards e.g. clause 83E chip-to-module specs (slide 18 of CFI_01_0714)

Electrical connector

Same as copper twin-ax cables MDI: SFP28, QSFP28

Optical interface specs

- Re-use 32GFC and 100GBASE-SR4, both of which have mature ~25Gb/s optical lane specifications.
- No new component developments.

Optical MDI

Same MDI as SFP+ and QSFP optical modules: LC and MPO connectors

No technical risk + extensive industry experience + full suite of existing standards to draw from = rapid standard

Proposed objective

 Define a single-lane 25 Gb/s PHY for operation over MMF consistent with IEEE P802.3bm Clause 95

How 5 Criteria responses may be modified by a 25 Gb/s over MMF objective

Broad Market Potential

- Lower cost, size and power for server interconnects data centers, internet exchanges, co-location services, services provider and operator networks.
- Enables optimized switch port usage over broad range of server to switch architectures (Cabinet-to-Cabinet, Middle-of-Row, End-of-Row).
- Enables large modular switches with high port counts.
- Economic Feasibility
 - 25GBASE-SR will be lower cost than 40GBASE-SR4
- Technical feasibility 32G Fibre Channel and 802.3bm standards
- Distinct Identity No other PHYs for 25Gb/s over MMF
- Compatibility No change.

Summary

placeholder

Thank you!

Back up

Server Designs

- Microservers ARM Servers
- Blade Servers
- 1/2U Servers
- 1U Servers
- 2U Servers
- 4-12U Servers
- Rack and multi-rack Servers

8U Storage Server

Rack Space

	Max Servers / 40RU
Micro-Server	>100
Blade Server	>100
1/2U Server	80
1U Server	40
2U Server	20
4U Server	10
8U Server	5
12U Server	3
Mainframe	<1

25GbE Switches

 Switch ASICs are increasing speed from 10GbE to 25GbE and more than doubling the port counts from 64 ports to 128+ ports

64 10GbE port ASIC enables 48 SFP+ and 4 QSFP+ 620Gb/s of Throughput

128 25GbE port ASIC enables32 QSFP+3.2 Tb/s of Throughput

10GbE Switch Designs

Blade Switches

4 SFP+

1/2U Switches

• 1U Switches

12 QSFP+ = 48 25GbE

64 SFP+

36 QSFP+ = 144 25GbE

2U Switches

96 SFP+

4-12U Modular Switches

216 QSFP+ = 864 25GbE

1U Server ToR Designs

1U Server EoR Designs

216 QSFP+ = 864 25GbE Each switch could support 800 servers with 1.6Tb/s of uplinks

This rack of modular switches would support 2,400 servers

- A home run is a server connect architecture where a server is connected straight into the core of the network
 - Common for storage servers or NAS that shares massive files – feedback to EA at HPC'13
 - Mainframes and large enterprise servers may connect straight into the core
 - These links need high speed
- Used when servers, storage and switches are consolidated into different areas
- Usually associated with structured cabling

TIA-942 – Data Center Cabling and Design

- TIA-942 Telecommunication
 s Infrastructure for
 Data Centers
 defines:
- MDA (Main Distribution Area) that fans out to
- HDAs (Horizontal Distribution Areas)

New Mega Data Center Design

- Most new data centers are being designed with a Pod (or Cell) Architecture
- Pods usually 15-20,000 sq ft
- HDA (Horizontal Distribution Area) is where distribution switches are located
- The Main Distribution Area (MDA) interconnect PODs and connects to the WAN and telecom networks

300,000 sq ft new data center

500'

POD Architecture

- 15,000 sq ft POD
- Up to 5,000 servers / POD
- 512 Racks possible
 - 32 Rows of racks
 - Each row has 16 racks
- Horizontal
 Distribution Area
 (HDA) connects all of the racks

200'

Home Runs

- Home Runs go
 - From select servers
 - To HDA
 - Patchcord within HDA
 - To centralized Switch
- 100 meters required

Is this ethernet, and is it just 25G Is this a niche application

From "40GBASE-T advantages and use cases" (jiminez_3bq_01_0711.pdf, 802.3bq)

Lower cost achieved by maximizing switch port utilization

Active Optical Cables (AOC) length distributions

- Pragmatic limitations to reach, reflected in reach distributions
- Average length < 10 m, 90% < 18 m
 - (Finisar: sales data)
- Note: Pluggable optics links exceed
 AOC volumes by ~ 3:1

- AOCs offer longer reach than passive copper
 - one of the solutions helping to maximize efficiency of server to access switch interconnect
 - but not compatible with structured cabling
 - AOCs need a chip to module interface spec.

How 5 Criteria responses may be modified by a 25 Gb/s over MMF objective in more detail...

Broad Market Potential

- An optical PHY utilizing a serial 25 Gb/s (1 x 25 Gb/s) electrical interface and optimized MMF interface will reduce cost, size and power for server interconnects in the data centers internet exchanges, co-location services, services provider and operator networks and provide a balance in cost between network equipment and attached stations.
- Enables optimization of switch port usage over broad range of server to switch architectures
- Enables large modular switches with high (128) port counts

Supporting material:

- Other infrastructure, e.g. in support of End-of-Row (EoR) or Middle-of-Row (MoR) will accelerate deployment and enhance deployment of Top-of-Rack (ToR)
- From page 8 of Call For Interest Consensus presentation, "The term "TOR" has become synonymous with server access switch, even if it is not located "top of rack" ", acknowledging that a 3 m reach may not be sufficient.
- Where longer than 3 m reaches are not sufficient, reliance on active optical cable assemblies does not provide satisfactory support in structured-cable installations.
- Existing form factors supporting multiple lanes of similar electrical and optical interfaces provide high port density options.

Compatibility

Inclusion of an objective for a single-lane 25 Gb/s PHY for operation over MMF is expected to have no specific Compatibility statement.

Distinct Identity

- There is no standard that supports Ethernet over duplex multimode fiber cabling at a data rate of 25Gb/s. The IEEE P802.3 project will define a single 25Gb/s PHY over multimode fiber.
- The proposed amendment to the existing IEEE 802.3 standard will be formatted as a new clause, making it easy for the reader to select the relevant specification.

Technical Feasibility

- Component and cabling vendors have presented data indicating that 25Gb/s operation over multimode fibre cabling is feasible with known techniques similar to those used in existing 32G-FiberChannel and 802.3bm standards. Presentations have provided analyses of PHY feasibility based on measurements of installed cabling and proposed new cabling types from TIA and ISO/IEC aimed at this application.
- Systems and infrastructure supporting Ethernet operation over multimode fiber cabling have been deployed by the hundreds of millions at speeds ranging from 10Mb/s to 10Gb/s. The proposed project will build on Ethernet component and system design experience and the broad knowledge base of Ethernet network operation.
- The reliability of Ethernet components and systems can be projected in the target environments with a high degree of confidence.

Economic Feasibility

- Prior experience with optical modules for 100GBASE-SR4 (4 lanes at 25.78 Gb/s per lane) and 32GFC (1 lane at 28.05 GBd) indicate that the specifications developed by this project will entail a reasonable cost for the performance of a single-lane 25 Gb/s PHY for operation over MMF.
- A 25GBASE-SR PHY is expected to be lower cost than a 40GBASE-SR4 PHY