A 400GbE PCS Option

IEEE 400 Gb/s Ethernet Study Group

November 2013 Dallas

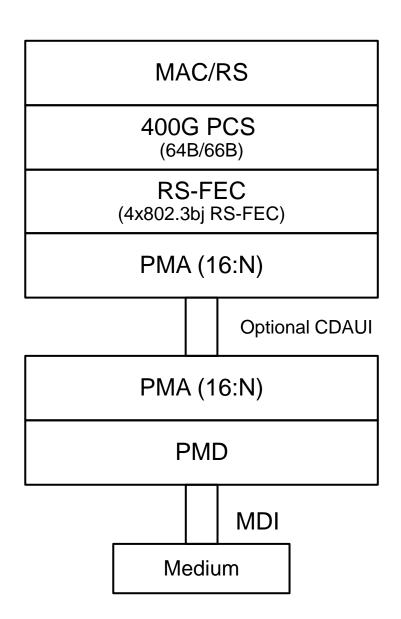
Ali Ghiasi - Independent
Mark Gustlin – Xilinx
Gary Nicholl – Cisco
Dave Ofelt – Juniper
Jerry Pepper - Ixia
Andre Szczepanek – Inphi
Tongtong Wang - Huawei

Introduction

- ➤ The following slides explore the feasibility of a 400GbE PCS with RS-FEC as an integral and required portion of the architecture
 - Note that the task force, once formed, will need to decide if FEC is needed as part of the base architecture, likely dependent on the PMDs chosen and their needs
- ➤ This architecture enables practical re-use of logic between 100GbE and 400GbE

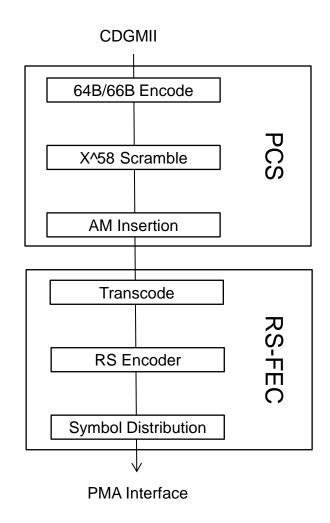
References

400GbE PCS requirements :


http://www.ieee802.org/3/400GSG/public/13_09/gustlin_400_02_0913.pdf

> 400G PCS options:

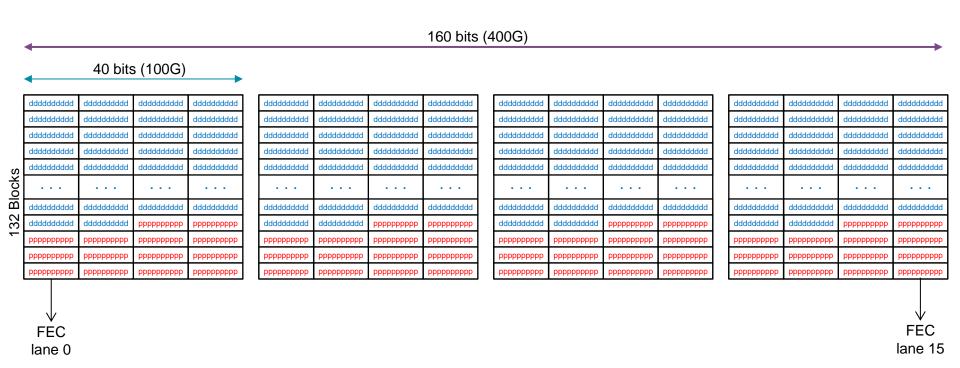
http://www.ieee802.org/3/400GSG/public/13 09/wang 400 01 0913.pdf
http://www.ieee802.org/3/400GSG/public/13 09/begin 400 01 0913.pdf
http://www.ieee802.org/3/400GSG/public/13 09/ghiasi 400 01 0913.pdf
http://www.ieee802.org/3/400GSG/public/13 09/song 400 01 0913.pdf
http://www.ieee802.org/3/400GSG/public/13 09/wang z 400 01 0913.pdf
http://www.ieee802.org/3/400GSG/public/13 07/gustlin 400 02 0713.pdf
http://www.ieee802.org/3/400GSG/public/13 07/wang 400 01 0713.pdf
http://www.ieee802.org/3/400GSG/public/13 07/ghiasi 400 01 0713.pdf
http://www.ieee802.org/3/400GSG/public/13 07/ghiasi 400 01 0713.pdf
http://www.ieee802.org/3/400GSG/public/13 07/ghiasi 400 01a 0513.pdf


400GbE Architecture With RS-FEC

- > PCS is 64B/66B based
- ➤ Required RS-FEC sublayer
- ➤ Interface between the PCS and RS-FEC is not exposed (no concept of PCS lanes!)
- ▶ 16 FEC lanes below the RS-FEC sublayer


Data Flow - TX

➤ RS-FEC sublayer re-uses the transcoding function and the RS encoder from 802.3bj x 4


Data Flow - RX

- ➤ RS-FEC sublayer re-uses the transcoding function and the RS decoder from 802.3bj x 4
- Supports re-ordering of FEC lanes on receive, allows flexibility in logical to physical lane mapping on TX

400GbE Data Distribution

▶ Below the RS-FEC sublayer, with using 4x802.3bj FEC, you would naturally have 16 FEC lanes

802.3bj AMs

- ➤ Clause 91 defines how Alignment Markers are mapped when sent across the 4 FEC lanes
 - They are re-mapped to the FEC lanes so they appear consecutively on a given FEC lanes
 - A 5b pad is added to the end to round make them fit within a even number of 257b blocks (20*64+5 = 257*5)
 - AM0 and AM16 are repeated on all 4 FEC lanes to make it less logic intensive to find block alignment
 - The remaining AMs uniquely identify the 4 FEC lanes

FEC	R						
Lane	0 1 2 3 4 5	6 7 8 9 1 1 1 2	1 1 1 1 1 1 1 1 3 4 5 6 7 8 9	2 2 2 2 2 2 0 0 1 2 3 4 5	2 2 2 2 3 3 3 6 7 8 9 0 1 2	3 3 2 3	
0	o AMO 63	AM4	AM8	AM12	AM16		5b pad
1	AM0	AM5	AM9	AM13	AM16		
2	AM0	AM6	AM10	AM14	AM16		
3	AM0	AM7	AM11	AM15	AM16		

802.3bj AM Distance

- ➤ AMs are always aligned to the beginning of an RS-FEC block
- ➤ The repetition distance between AMs for normal operation in 802.3bj is once every 4096 FEC blocks
- ➤ When sending rapid alignment markers, they are sent every 2 FEC blocks for EEE support

2 or 4096 FEC blocks AM0 AM4 8MA AM12 AM16 AM4 AM12 AM0 8MA AM16 AM5 AM9 AM13 AM16 AM5 AM9 AM13 AM₀ AM₀ AM16 Rest of Rest of FEC block FEC block AM10 AM14 AM16 AM10 AM14 AM16 AM₀ AM6 AM0 AM6 AM₀ AM7 AM11 AM15 AM16 AM0 AM7 AM11 AM15 AM16

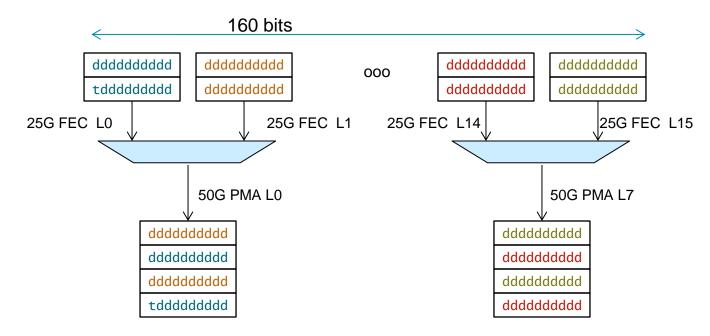
Possible 400Gb/s AMs

- > Re-use many of the AMs from 802.3ba to allow common lane processing between 100GbE and 400GbE, add unique 400G AM also with TBD functionality (not really a marker since the lanes are already uniquely identified)
- ➤ Note that a given combination 320b creates a unique FEC AM for each FEC lane

ſ		1						•
	FEC	R	eed-Solomor					
	Lane	0 1 2 3 4 5	6 7 8 9 1 1 1 2	1 1 1 1 1 1 1 1 3 4 5 6 7 8 9	2 2 2 2 2 2 0 0 1 2 3 4 5	2 2 2 2 3 3 6 7 8 9 0 1	3 3 2 3	
	0	O AMO 63	AM4	AM8	400G AM0	AM16		
ĺ	1	AM0	AM5	AM8	400G AM1	AM16		4000 DO 550 leater - 0
	2	AM0	AM6	AM8	400G AM2	AM16		100G RS-FEC Instance 0
ĺ	3	AM0	AM7	AM8	400G AM3	AM16		
Ì	4	O AMO 63	AM4	AM9	400G AM4	AM16		
İ	5	AM0	AM5	AM9	400G AM5	AM16		1000 DO 550 L 1 1
ĺ	6	AM0	AM6	AM9	400G AM6	AM16		100G RS-FEC Instance 1
Ì	7	AM0	AM7	AM9	400G AM7	AM16		
Ì	8	O AMO 63	AM4	AM10	400G AM8	AM16		
İ	9		AM5	AM10	400G AM9	AM16		4000 B0 FF0 L 4 0
ĺ	10	AM0	AM6	AM10	400G AM10	AM16		100G RS-FEC Instance 2
ĺ	11	AM0	AM7	AM10	400G AM11	AM16		
İ	12	AM0 63	AM4	AM11	400G AM12	AM16		
İ	13		AM5	AM11	400G AM13	AM16		4000 DC FFC laster as 2
İ	14	AM0	AM6	AM11	400G AM14	AM16		100G RS-FEC Instance 3
İ	15	AM0	AM7	AM11	400G AM15	AM16		

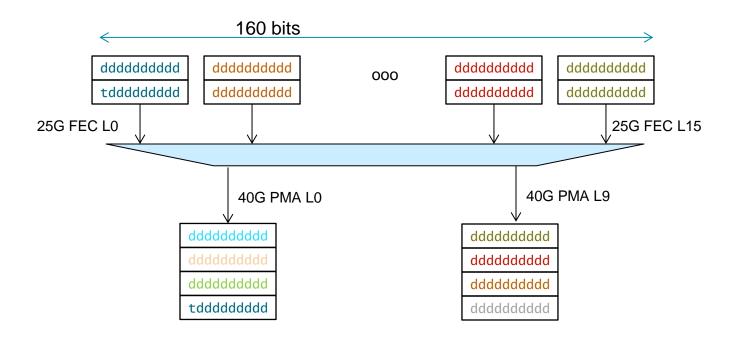
400 Gb/s AM Distance

- ➤ AMs are always aligned to the beginning of an RS-FEC block
- ➤ Keep the same repetition distance between AMs for normal operation as in 802.3bj, once every 4096 FEC blocks
- ➤ When sending rapid alignment markers, they are sent every 2 FEC blocks for EEE support

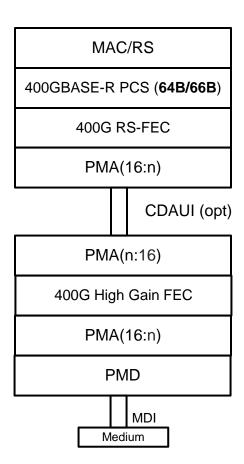

							2 o	<u>r</u> 4	096	FEC	blo	cks
OM <i>A</i>	AM4	AM8	400G AM0	AM16					AM0	AM4	AM8	400G AM0

	AM16	400G AM0	AM8	AM4	AM0
Rest of	AM16	400G AM1	AM8	AM5	AM0
FEC block	AM16	400G AM2	AM8	AM6	AM0
	AM16	400G AM3	AM8	AM7	AM0
	AM16	400G AM4	AM9	AM4	AM0
Rest of	AM16	400G AM5	AM9	AM5	AM0
FEC block	AM16	400G AM6	AM9	AM6	AM0
	AM16	400G AM7	AM9	AM7	AM0
	AM16	400G AM8	AM10	AM4	AM0
Rest of	AM16	400G AM9	AM10	AM5	AM0
FEC block	AM16	400G AM10	AM10	AM6	AM0
	AM16	400G AM11	AM10	AM7	AM0
	AM16	400G AM12	AM11	AM4	AM0
Rest of	AM16	400G AM13	AM11	AM5	AM0
FEC block	AM16	400G AM14	AM11	AM6	AM0
	AM16	400G AM15	AM11	AM7	AM0

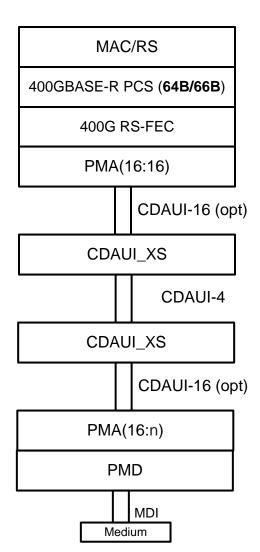
AM0	AM4	AM8	400G AM0	AM16	
AM0	AM5	AM8	400G AM1	AM16	Rest of
AM0	AM6	AM8	400G AM2	AM16	FEC block
AM0	AM7	AM8	400G AM3	AM16	
AM0	AM4	AM9	400G AM4	AM16	
AM0	AM5	AM9	400G AM5	AM16	Rest of
AM0	AM6	AM9	400G AM6	AM16	FEC block
AM0	AM7	AM9	400G AM7	AM16	
AM0	AM4	AM10	400G AM8	AM16	
AM0	AM5	AM10	400G AM9	AM16	Rest of
AM0	AM6	AM10	400G AM10	AM16	FEC block
AM0	AM7	AM10	400G AM11	AM16	
AM0	AM4	AM11	400G AM12	AM16	
AM0	AM5	AM11	400G AM13	AM16	Rest of
AM0	AM6	AM11	400G AM14	AM16	FEC block
AM0	AM7	AM11	400G AM15	AM16	


Multiplexing

- ➤ With 16 FEC lanes, you can multiplex down to 8, 4, 2, or 1 lane(s)
- Multiplexing is typically done on RS boundaries (10-bit in the case shown)
 - To preserve error correction capability in the face of burst errors
- If you are running across a medium that only has uncorrelated errors, then bit multiplexing is fine
- ➤ First you must find block lock to find 10-bit boundaries (using AM0/AM16), then you multiplex on RS boundaries
 - No need to deskew the various lanes
- Below shows muxing from 16 lanes down to 8 lanes


Supporting 10 Physical Lanes

- Can 10 physical lanes be supported with 16 FEC lanes?
 - Yes, but it would be a point to point interface, you have to find block lock, deskew and re-oder when you change lane widths
- ➤ You could stripe at the block level, or bit level; as long as you define a fixed mapping, with enough alignment marker information per physical lane to be able to align the 10 physical lanes
- Note that this is different than MLD where you can mux, and remux endlessly without doing block lock, deskew or re-ordering at intermediate points


Stronger FEC

- ➤ With this architecture, if a stronger FEC is needed than the base FEC, you simply add the FEC on top of what is already there, no additional transcoding is needed
- You can also strip off the current FEC and then add a stronger FEC to the PCS encoded data, again without having to do transcoding again

Future AUI Example

- An extender sublayer can be used to add AUI specific FEC for a future AUI interface which requires a stronger FEC
- ➤ Extender sublayer would remove the RS-FEC parity bits, leave the transcoded data as is, and add a stronger FEC

Pros/Cons

Pros

- A lot of re-use from 100GbE 802.3bj, allows for compact 1x400GbE and 4x100GbE designs
- Able to support 4xSR4 or other PMDs that require a medium weight FEC

Cons

Always ~100ns of latency, an optimized 400G specific RS-FEC with similar gain could achieve ~
 50ns of latency

Reality

 This architecture won't cover all FEC or coding needs in the future, there will be PMD and AUI specific FECs and coding sublayers to be defined in the future (in a subordinate PCS sublayer)

Summary

- ➤ These slides explored the feasibility of a 400GbE PCS with RS-FEC as an integral and required portion of the architecture, building upon the previous presentations on PCS options
- ➤ This architecture enables practical re-use of logic between 100GbE and 400GbE

Thanks!