Technical Feasibility of 400GE Architecture with Stronger FEC

Tongtong Wang, Wenbin Yang, Xinyuan Wang

Nov 2013

www.huawei.com

HUAWEI TECHNOLOGIES CO., LTD.

IEEE 802.3 400GbE Study Group

Motivation

- High speed Ethernet connections, such as 400GbE, especially with advanced modulations, significantly increase the complexity of PMA and/or optical and electrical PMDs
 - Stronger FEC than the genericFEC may be needed to satisfy the system performance requirement
- This contribution includes two parts
 - Discuss interoperation scenarios between different CDAUI-n
 - Investigate different approaches in 400GbE architecture to support stronger FEC

400GE PCS Architecture with Stronger FEC

- One unified PCS architecture with generic FEC is feasible to cover most PMA/PMDs with 25/50/100Gbps lanes per lambda, optical fiber, copper cable, or SerDes lane;
- Stronger FEC could be used for PAM-n/DMT or specific applications.
 - Refer to zhai_400_01_0713.pdf, takahara_400_01a_0913.pdf, nicholl_400_01_0713.pdf
- 400GbE PMDs are not defined yet, so we should define the PCS architecture to adapt to possible future options.

Generic FEC Possibilities

FEC code RS(n,k,t,m)	overclcoking	Trans- coding	Effective Gain	Total Area (40nm)	Overall Latency	Total Power
RS(528,514)	0%	256b/257b	4.87dB	275k	99.4ns	101mW
RS(544,514)	3%	256b/257b	6.10dB	516k	121.5ns	187mW
RS(560,514)	6%	256b/257b	6.39dB	871k	110ns	318mW

- Generic FEC can use any one of RS(528/544/560, 514) as mandatory;
- Defining different generic FEC for different PMDs increases the complexity and cost of PCS.
 - □ We suggest to pick just one algorithm for the generic FEC.

*Refer to FEC_options_gustlin_01_0112

Possible Stronger FEC

	application	Code type	OH (%)	NCG (dB) @1E-5
Medium Strength	100GE-KP4	RS(544, 514, 15, 10)	5.84	6.85
RSFEC	ITU-T G.975 / G.709/Y.1331	RS(255, 239, 8, 8)	6.69	6.20
BCH	ITU-T G.975.1 I.3	BCH(3860,3824) / BCH(2040,1930)	6.69	8.99
	802.3bm FEC discussion *	BCH(92, 70, t=3) x BCH(90, 68, t=3)		> 11dB
DOITX DOIT		BCH(180, 132, t=6) x BCH(92, 70, t=3)		8.5dB/12dB

 Since complex and stronger FEC in optical module significantly increases the cost and constrain 400GE market potential, ideally, the stronger FEC chosen should have the following properties: moderate complexity, enough code gains, and limited trancoding cost if not being able to avoid it.

*Refer to wang_01_0912_optx, wang_01_0113_optx

FEC Effect on 400GbE Architecture

- In 400GbE early stage, the generic FEC can cover both CDAUI-16 and most PMDs.
- For PMDs with advanced modulations, use the generic FEC for CDAUI-n link, and stronger FEC for the PMDs;
- Keep the same PCS architecture to support CDAUI-n/PMD evolvements.

400GbE Interoperation Between Different CDAUI-n

- Define one PCS/FEC architecture to support CDAUI-16/8/4 interoperation.
- The generic FEC should be identical with or without stronger FEC.
- Additional stronger FEC on both sides does not affect the interoperation.
- Symbol based Mux/demux is essential for this scenario.

Generic FEC & Stronger FEC Configuration

- Bypass the generic FEC to reduce latency and power consumption, use stronger FEC to compensate link budget on PMDs.
- Enable the generic FEC for CDAUI-n protection.
- Two approaches in 400GE with stronger FEC
 - Generic FEC enabled (blue data path)
 - Generic FEC disabled (red data path)
- Process on Stronger FEC layer
 - Decode the generic FEC or not
 - Yes: encode stronger FEC
 - No: just wrap stronger FEC checksum on
 - Skip decode step for lower latency
 - May induce overclocking and extra overhead issues
 - No additional coding gain.

HUAWEI TECHNOLOGIES CO., LTD. IEEE 802.3 400GbE Study Group

Page 8

TC Considerations For Stronger FEC

	256b/257b based Stronger RS-FEC	Other RS FEC options
64b/66b PCS coding	Transcode needed	transcode is always needed for higher coding efficiency.
256b/257b PCS coding	No transcode needed	Perhaps no transcode needed when coding efficiency is good enough for PMD overhead limitation.

- 256b/257b coding is suitable for stronger RS-FEC or other FEC algorithm, from the prospective of coding efficiency.
- Better use 256b/257b DC PCS coding to have hamming distance across PMA interface and save transcoding on stronger FEC layer, when the generic FEC is bypassed.

Summary

- Define one PCS/FEC architecture to support a generic FEC and future stronger FEC.
- Interoperation between CDAUI-16/8/4 is feasible with symbol based multiplexing/de-multiplexing.
- The generic FEC can be bypassed to save latency and power.
- Use 256b/257b direct coding to simplify coding procedures for stronger FEC process.

Thank you

www.huawei.com