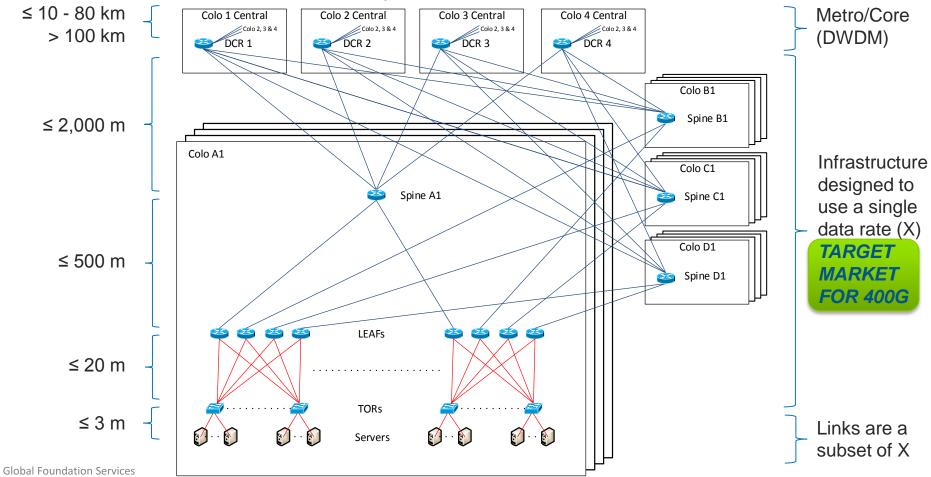


Global Networking Services Objectives to Support Cloud Scale Data Center Design

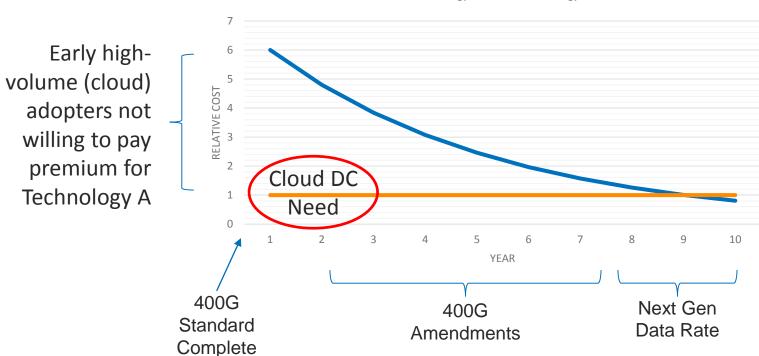

Brad Booth, Tom Issenhuth IEEE 802.3 400Gb/s Ethernet Study Group IEEE 802 November 2013 Plenary Dallas, TX

Supporters

Cloud Scale Data Centers

- There is no single design or size for a cloud data center
 - Topologies continue to evolve with technology advancements and cost structures
- While we attempt to standardize designs, differences are driven by generation of design, location and scale
- While the overall traffic flow within different data centers is similar the design differences drive different link requirements
- Here is an overview of a typical cloud data center and the interconnections that would be required

Cloud Data Center Campus Interconnections


Interconnection Volume

- Multiple colo areas (≥ 4) per data center
- Volumes below are per colo area

A End	Z End	Volume	Reach (max)	Medium	Cost Sensitivity
Server [‡]	TOR	10,000s	3 m	Copper	Extreme
TOR	LEAF	1,000s	20 m	Fiber (AOC)	High
LEAF	Local SPINE	100s	300 m	SMF	Medium
LEAF	Colo SPINE	1,000s	400 m	SMF	High
SPINE	DCR	100s	1,000 m	SMF	Medium
DCR	Metro	100s	10 - 80 km	SMF	Low

‡ Server-TOR links may be served by breakout cables

Technology Timing Considerations Technology Comparison

Technology A — Technology B

Reach Considerations

- Links < 500 m
 - Very cost sensitive due to high volume of links being used
 - Typically assume a 3-4 dB loss budget
- Links > 500 m
 - Decreased cost sensitivity due to lower volume and technical trade-offs
 - Loss budget typically in 4-6 dB range
- Links < 20 m
 - MMF is a possible consideration, but needs to be cost competitive with AOCs

Recommendations

- Adopt an objective to support the high-volume Cloud Data Center reach requirement
 - Provide physical layer specifications which support 400 Gb/s operation over:
 - At least 500 m of single-mode fiber
- Other reach objectives could be added
 - Above meets Cloud DC requirements