16 'v' 80 PCS Lanes for 400GbE An implementer's Perspective

Cedrik Begin, Gary Nicholl - Cisco Systems IEEE 802.3 400GSG, September 2013, York

Topics

- Background
- Contribution Recap
- 400GE \& 4x100GE Implementation Options
- Summary

Background

- One point of discussion that has come up during previous meetings, is whether the 400GbE PCS should be based on 16 or 80 PCS lanes
- The primary argument for 16 PCS lanes is that it is simple and forward looking (less is more!)
- The primary argument for 80 PCS lanes is that it makes more reuse of existing 100G technology, and therefore enables a more efficient implementation of a dual rate 1x400G and $4 \times 100 \mathrm{G}$ MAC chip
> Also supports $40 \mathrm{~Gb} / \mathrm{s}$ lanes (i.e. $10 \times 40 \mathrm{G}$)
- This presentation investigates the technical feasibility of both from an implementation perspective.

Contribution Recap

- Here are some previous contributions on the topic.
- gustlin_400_01b_0513 [Slide 7]
- ghiasi_400_01a_0513 [Slide 9]
- gustlin_400_02_0713 [Slides 7 \& 8]
- wang_400_01_0713
- ghiasi_400_01_0713 [Slides 7-9]

400GE - $4 \times 100 \mathrm{G}$ Reuse

- Start with $4 \times 100 \mathrm{GE}$ MACs+PCS.
- Each 100GE MAC/PCS based on 20 PCS Lanes (@ $5.15 \mathrm{~Gb} / \mathrm{s}$)
- Note that for simplicity's sake only the Rx path is shown.

400GE - $4 \times 100 \mathrm{G}$ Reuse Option \#1

- Add 400G capable data pipe of MAC, RS layer, decode and descrambling (this pipe can also operate at 100G for $4 \times 100 \mathrm{G}$ operation)
- Align, deskew, reorder done over 80 VLs (challenging).
- $4 x 100 \mathrm{G} 2: 1$ mux count = 10032
- $1 \times 400 \mathrm{G} 2: 1$ mux count $=41712$
- Need 80 different alignment markers.

400GE - 4 x 100G Reuse Option \#2

- Like option 1, Add 400G capable data pipe of MAC,RS layer, decode and descrambling (this pipe can also operate at 100G for $4 \times 100 \mathrm{G}$ operation)
- 16 of the 80 VLs are 25 G capable.
- Deskew, align, reorder much simpler.
- $1 \times 400 \mathrm{G}$ 2:1 Mux count $=8448$

7 - $3 x 100 \mathrm{G}$ 2:1 Mux count $=7524$

400GE - 4x100GE Reuse Option \#3

- Like option 2, except that the MAC,RS layer, Decode and descramble operates in either $1 \times 400 \mathrm{G}$ or $4 \times 100 \mathrm{G}$ modes.
- 16 of the 80 VLs are 25 G capable.
- Deskew and demux much simpler.

100G RS-FEC Reuse Proposal

- Send 4x25G VL to each 100G RS FEC.
- PCS sends and expects Alignment Markers every 16399 data blocks on a given VL. (such that alignment markers align to beginning of each $820^{\text {th }} 5280$-bit word).
- Transcode function: in alignment marker removal/insertion combines 466 -bit alignment markers into one 257-bit block and vice versa. Ensure that AM0 travels on FEC lane 0, AM1 travels on FEC lane $1 .$. .
- FEC alignment lock and deskew will look for Alignment markers every $820^{\text {th }}$ codeword

Summary

- Our analysis shows that a 16 PCS lane solution for 400G, enables the most efficient implementation for both a single rate 400GE MAC and a dual rate 400G/4x100G MAC.
- PCS lane reorder over 80 lanes (400G mode), is significantly more complex than PCS lane reorder over 4×20 lanes (4x100G mode).
- $4 x 20$ lane reorder $=\sim 10,0002: 1$ mux eqv.
- 1×80 lane reorder $=\sim 42,0002: 1$ max eqv.
- 1x16 lane reorder $=\sim 8,5002: 1$ max eqv

$$
4 \times 20 \neq 1 \times 80 \quad!
$$

