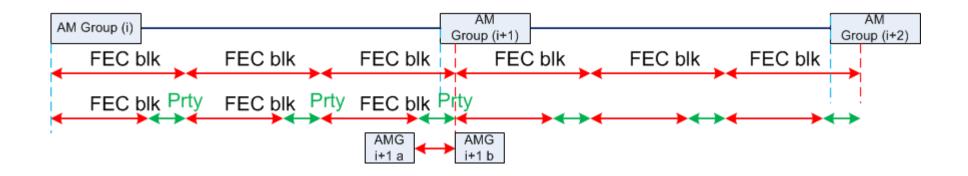
400GE Lane Configurations v.s. FEC Options

IEEE 802.3 Plenary Meeting July 2013, Geneva, Switzerland

Introduction

- This work provides preliminary analyses for possible FEC schemes to be considered by 400GE
 - The generic host FEC expected to be used for following PMDs: CDAUI-16, CDAUI-8, 400G-SR16
 - 400 GbE PMD based on 4 lanes of serial 100 Gb/s PMD may require PMD specific FEC due to high gain and complexity
 - 400 GbE backplane may require more complex signaling such as DMT and the generic FEC may not be enough
- At this early stage, we don't even have an specific PMD under consideration with numerous unknowns: total number of physical lanes, total number of PCS lanes, modulation format, etc
 - This analysis provide hypothetical tradeoffs between theoretical coding gain, overclocking rate, and processing latency
 - This analysis can be helpful in determining physical lane and/or logic lane configurations
 - This analysis can also help guide us if there is enough benefit to define a new FEC optimized for 400 GbE instead of reusing 802.3 BJ FEC

Physical /Logical Configurations

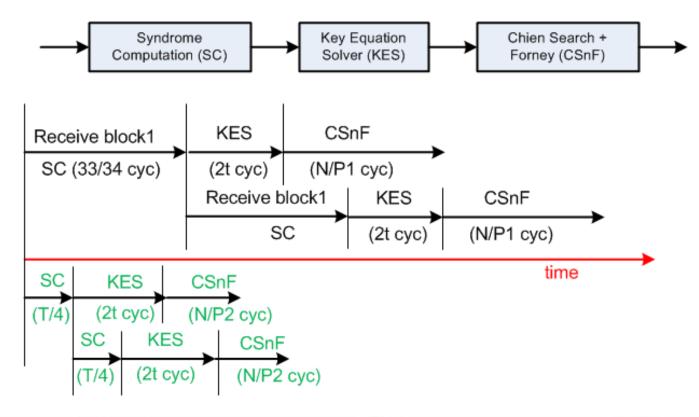

- For 400GE, based on current technology, 4 options may be considered for the total number of physical lanes (PLs):
 - N=4
 - N=8
 - N=10
 - N=16
- Regarding the total number of PCS lanes, we may have following options:
 - L=4 (suit for 4 PLs)
 - L=8 (suit for 8 PLs and 4 PLs)
 - L=16 (suit for 4, 8 and 16 PLs)
 - L=20 (suit for 4 and 10 PLs)
 - L=24, or 48 (suit for 4, 8, and 16 PLs)
 - L=80 (suit for 4, 8, 10, and 16 PLs)

Type of FEC Codes

- Based on current trend in the IEEE P802.3bj and IEEE P802.3bm, FEC will likely be included for 400GE
- Considering such a high speed requirement and general desire on low power and low latency, simple block codes such as BCH code or RS codes are promising candidate for FEC codes.
- Considering burst errors, RS FEC codes are well suited
 - BJ FEC is an RS FEC(528,514)
 - Early 400 GbE PMD implementation such as CDAUI-16 and SR-16 may not have error burst as the likely receiver will be based on CTLE but having a FEC with burst error is nice and will not limit future implementations.

FEC Block Size v.s. PCS Lanes

 If encoding over multiple (L) PCS lanes, multiple 66-b blocks are multiplexed into one data stream. Multiple AM blocks (i.e., L AM blocks per AM group) are thus lumped together.


• It will cause implementation issue if the total number of bits between two AMGs is not multiple of FEC (source) block size regardless using transcoding or not.

Alignment Marker (AM) Analysis

- Given a total of L PCS lanes, there're a total of Lx16384*66bits between two consecutive AM groups
 - Unless L is multiple of 5, FEC block size should not be a multiple of 10
 - Given other options of L (=4, 8, or 16), FEC block size should be a multiple of 4
- Considering RS codes defined over a finite field GF(2^m):
 - For m=10, with no overclocking, RS(t=7) is the best option under certain constrains "BJ CL 91 FEC"
 - For m=11, m=12, m=13, or m=14, or m=15, RS code size [*] will be a multiple of m (bits/symbol), which is not a factor of Lx16384x66 when L=4, 8, 16, or 20 (considering either 256/257b or 512/513b transcoding)
 - For m=16, L can be 4, 8, 16, 20 ,or 80
 - For m>16, overall latency and complexity will be a big concern.
- In brief, either m=10 or m=16 is a good option.
 - * Adding dummy bits or shortening a code symbol is not considered here for ease of implementation.

Decoding Latency for 400G FEC vs. 100G RS-FEC

- Parallel level in syndrome computation has to be linearly increased in 400G case in order to compute syndromes on-the-fly.
- Parallel level (P2) in Chien Search part should be increased in 400G case. But it
 may not be linearly increased (i.e., 4xP1) considering implementation complexity.

FEC Option I – Reuse bj FEC over 400G Data Rate

- To reuse bj FEC, it requires going with integer number of x10 pcs lanes
- For **m=10**, L=20 or 80 (PCS lanes)
 - RS(528, 514, t=7, m=10) (TC=256/257b), same as 100G-KR4, 0% OC
 NCG ~= 5.7dB
 - Latency: transcoding + encoding + receiving block + decoding ~= 45 ns
 - Reference: 100G-KR4 FEC gain ~ 5.7 dB and latency : 85~95ns
 - RS(544, 514, t=15, m=10) (TC=256/257b), same as 100G-KP4, 3% OC
 - NC ~= 6.9dB
 - Latency: ~= 70 ns
 - Reference: 100G-KR4 FEC latency: 95~105ns
 - Reusing bj FEC across 400G PCS only reduces latency by about half since decoding latency doesn't scale down as the block receiving time.

FEC Option II – Extended bj FEC over 400G Data Rate

- For m=16, L=4, 8, 16, 20, 80. Symbol size=16b and symbol interleaving is used for data distribution over multiple PLs.
 - Under no overclocking,
 - ✤ RS(528xK, 514xK, t=7xK), K=1, 2 or 4 (TC=256/257b)
 - RS(t=7), similar to bj FEC except larger symbol size (16 vs. 10)
 NCG= 5.5dB
 - Latency: ~= 50 ns
 - RS(t=14), double sized case
 - NCG ~= 6.2dB
 - Latency: ~= 98ns
 - RS(t=28), quadruple sized case
 - o NCG ~= 6.8dB
 - o Latency: > 150ns
 - ✤ RS(528xK, 513xK, t=15xK/2), K=2, 4. (TC=512/513b)
 - i.e., RS(t=15) and RS(t=30)
 - Under 3% overclocking (still ensure integer PLL)
 - ✤ RS(544xK, 514xK, t=15xK), K=1, 2 (TC=256/257b)
 - RS(t=15), NCG ~= 6.6dB, Latency ~= 80ns
 - RS(t=30), NCG ~= 7.4dB, Latency ~= 100~ 160ns
 - ✤ RS(544xK, 513xK, t=31xK/2), K=2 (TC=512/513b)
 - i.e., RS(t=31), similar to RS(t=30) case.

Summary of Coding Options

- The following options are provided for coding over 400G data rate.
- For m=10, L=20 or 80
 - Use 100G-KR4 FEC over 400G, OC=0%
 - NCG ~= 5.7dB identical gain to BJ FEC
 - Latency: ~= 45 ns, but latency was cut by ~ half
 - Use100G-KP4 FEC over 400G, OC=3%
 - NC ~= 6.9dB
 - Latency: ~= 70 ns
- For m=16, L=4, 8, 16, 20, 80
 - Under no overclocking, RS(t=14),
 - NCG= 5.5dB
 - Latency: ~= 50 ns
 - Under no overclocking, RS(t=14),
 - NCG ~= 6.2dB
 - Latency: ~= 98ns
- For m=12, L=24 (N=4, 6, 8) or L=48 (N=4, 6, 8, or 16)
 - RS(528x2, 514x2, t=14), OC=0%
 - o NCG ~= 6.4dB (6.93dB for t=28)
 - Latency: ~=88ns

Suggestions

- If using 16PCS, extended bj FEC should be considered
- If reusing bj FEC, 80 PCS lanes should be considered
- At this early stage not knowing all the upcoming PMD implementation, the PCS should not limit these future implementations
- The BJ FEC can address the need for generic host FEC, higher order modulation (HOM) expect to have an integrated high gain FEC
- The combination of FEC coding gain and/or latency is likely too little to redefine brand new FEC over 4 instantiations of BJ KR4 FEC.

Future Work

- Power estimation will be provided in the next IEEE meeting
- Net coding gain over burst channels will be estimated and presented in next IEEE meeting.