Channel Pair To Pair Resistance Imbalance (End to End System Imbalance)

Ad Hoc Proposal for PSE PI P2PRUNB Model

Norfolk VA May 2014

Yair Darshan
Microsemi
ydarshan@microsemi.com

Proposal for PSE PI P2PRUNB model

- Model is implementation independent
- Zi is the CM impedance of the implementation per pair. i=1to 4.
 - We are interested in the DC value of that Impedance.
- Vi is the voltage measured to the common point.
- li is PSE Icable current operating range per PSE type at ON_STATE.
- We want to specify P2P PSE PI Resistance Unbalance in terms of Vi and Ii.

Requirement Derivation - 1

- By definition:
- I1=(V1-V)/Z1 → Z1=(V1-V)/I1
- I2=(V2-V)/Z2 \rightarrow Z2=(V2-V)/I2
- I3=(V3-V)/Z3 \rightarrow Z3=(V3-V)/I3
- I4=(V4-V)/Z4 \rightarrow Z4=(V4-V)/I4
- By definition:
- P2P PSE PI Zunbalance=

Requirement Derivation - 2

P2P PSE PI Zunbalance=

$$= \frac{Z_i - Z_j}{Z_i + Z_j} = \frac{\frac{V_i - V}{I_i} - \frac{V_j - V}{I_j}}{\frac{V_i - V}{I_i} + \frac{V_j - V}{I_j}} = TBD \max$$

Between any two pairs i≠j.
Since we need Z in DC → Z→R

(1)
$$\frac{Z_i - Z_j}{Z_i + Z_j} = \frac{R_i - R_j}{R_i + R_j} = P2PRUNB \text{ max},$$

Ri is function of Vi/li which addresses non linear circuitry at worst case unbalance operating point defined by PSE vendor.

(2)
$$|(V_1 - V_2)| - |(V_3 - V_4)| < (57V - 50V) = 7V(TBD)$$

(3)
$$V_1 - V_2 = 44V$$
 to 57V max

(4)
$$V_3 - V_4 = 44V$$
 to 57V max

Comments?