

Resistive Imbalance Specification Issues and Limitations

Ken Bennett – Sifos Technologies, Inc. Resistive Imbalance Ad Hoc June 10, 2014

Overview

- A goal of the Ad Hoc has been to determine and limit Current Imbalance by specifying behavior of each contributing element (PSE, Channel, PD)
 - Current imbalance would be used to determine max. current per pair
- Based upon a basic implementation
 - Single PD (Bridge outputs tied together)
 - Single-source PSE
 - No balance correction
- Resistive Imbalance is the parameter used for the Channel, and has been suggested as a specification requirement for the PSE and PD Interfaces
- Limitations of this method are presented herein

System Imbalance

 The following is a Resistive imbalance equation for determining current imbalance between pairs (Single source, single PD)

 $\frac{\sum R_{max} - \sum R_{min}}{\sum (R_{max} + R_{min})}$

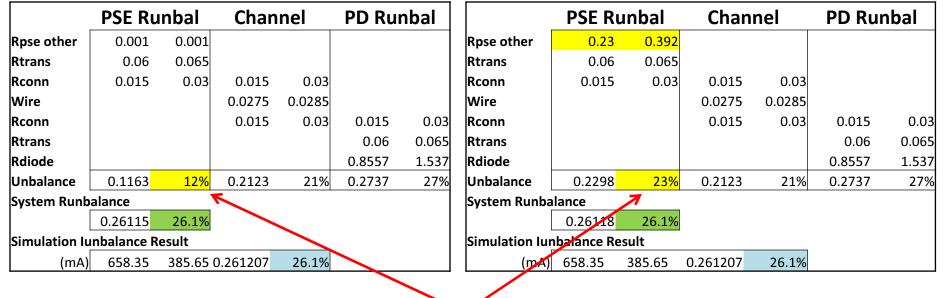
This can be separated into contributions of the PSE, PD and Channel:

 $\frac{R_{pseRmax} - R_{pseRmin}}{\sum(R_{max} + R_{min})} + \frac{R_{CableRmax} - R_{CableRmin}}{\sum(R_{max} + R_{min})} + \frac{R_{pdRmax} - R_{pdRmin}}{\sum(R_{max} + R_{min})}$

- The contribution of each is dependent upon the overall resistance
 - PSE PI Runbalance contribution is not the same as PSE PI Runbalance

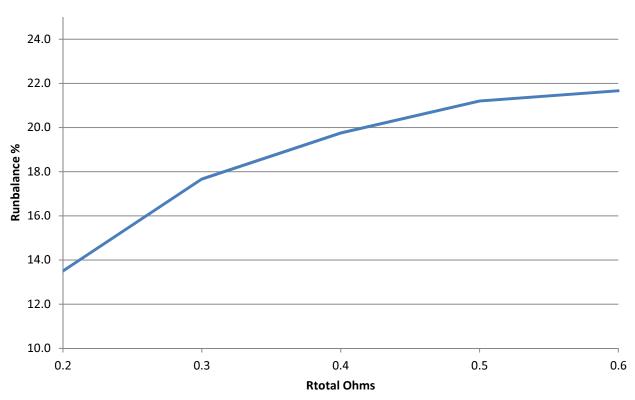
 $\frac{R_{pseRmax} - R_{pseRmin}}{\sum(R_{max} + R_{min})} \neq \frac{R_{pseRmax} - R_{pseRmin}}{R_{pseRmax} + R_{pseRmin}}$

PD PI Runbalance contribution is not the same as PD PI Runbalance


 $\frac{R_{pdRmax} - R_{pdRmin}}{\sum(R_{max} + R_{min})} \neq \frac{R_{pdRmax} - R_{pdRmin}}{R_{pdRmax} + R_{pdRmin}}$

- Changes in total resistance can change derived Runbalance requirements for either or both PIs
 - An Runbalance spec at the PSE PI and PD PI will not directly correlate with current imbalance

PSE Runbalance Calculation, Simulation


- Simulation Conditions common to each:
 - ~1M Cable, worst case model used to arrive at ~26%
 - PD with Diode Bridge
 - PD, Channel fixed, PSE varied

PSE Runbalance can vary significantly for a fixed total Runbalance

PSE Runbalance Requirement VS PSE total resistance (Channel, PD, and System Runbalance unchanged)

PSE_Runbalance vs PSE_Rtotal

Sifos Technologies, 2014

PD Simulation of Diode vs FET bridge

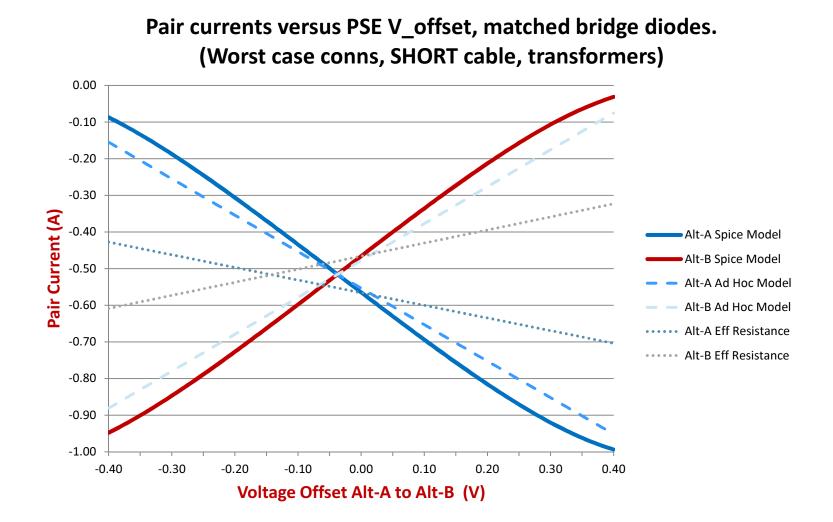
- **Simulation Conditions common to each:**
 - PSE, Channel (~1M Cable), from worst case models, held constant
 - System Imbalance = 26.12%
- **Diode Case:**
 - 26.12% Junbalance in simulation
 - Vdiode/Idiode + Rtransf + Rconn \rightarrow

 $R_{pdRmax} - R_{pdRmin}$ $R_{pdRmax} + R_{pdRmin}$

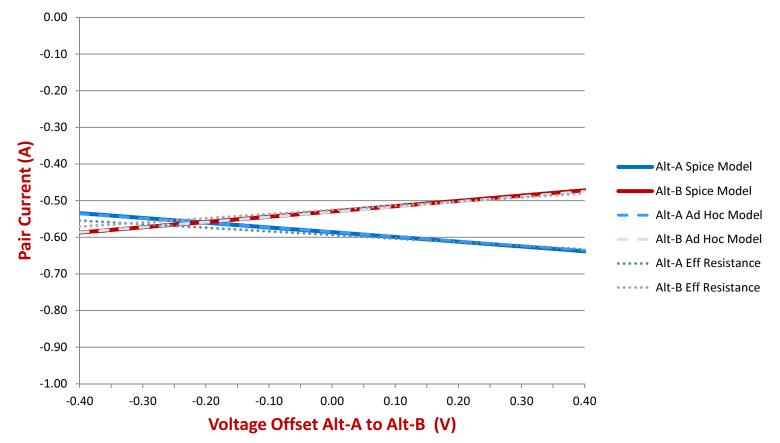
- Result: 27.45% PD PI Runbalance
- FET Case:
 - Simulations used to arrive at 26.12% Junbalance
 - FET resistances: .04 min and 1.45 max Ohms
 - Rds + Rtransf + Rconn $\rightarrow \frac{R_{pdRmax} R_{pdRmin}}{-}$

 $R_{pdRmax} + R_{pdRmin}$

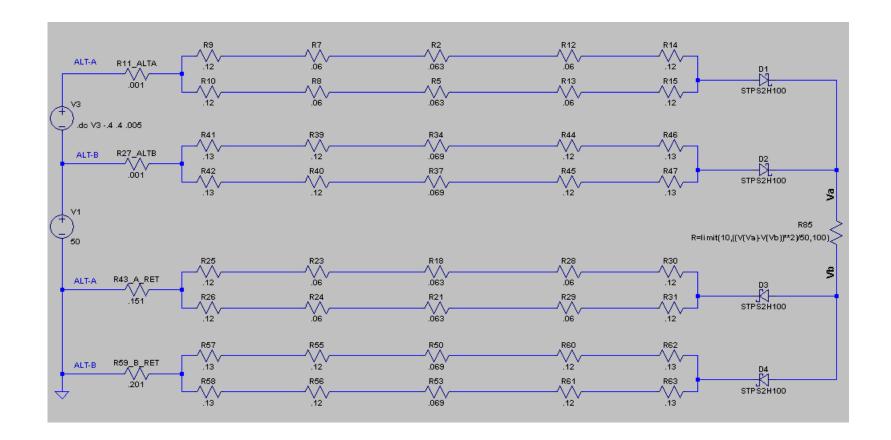
Result: 34.18% PD PI Runbalance


Voltage Unbalance and Diode Models

Three Diode Models Simulated


- I: Spice Model of Schottky STPS2H100
- 3: Ad Hoc Model Vdiode = 0.46 + 0.25 (id)
- 2: Diode Effective Resistance, determined by V/I at balanced Voltage Condition
- Conditions for simulations:
 - Voltage Offset Varied in one pair, +/-0.4V relative to the other pair
 - Worst Case Cable, Connector, Transformer Unbalance
 - Short (1M), Long (~80M) Cables, 5% unbalanced
 - Diodes <u>Matched</u> (same model in each pair)
 - 50V Source, 50W Load

Pair currents versus PSE V_offset, matched bridge diodes. (Worst case conns, LONG cable, transformers)


Summary

- Worst Case Runbalance of each PI doesn't just depend upon Worst Case System Runbalance
 - PI Rtotal has a strong influence
- Specifying Runbalance based upon the worst case can be too restrictive for other valid implementations
 - And inapplicable to others
- Actual Current imbalance can be worse than indicated by Ad Hoc models
 - And *significantly* worse than indicated by effective resistance, as may be determined in a test for compliance
- Worst case current per pair in a link cannot be accurately predicted with a PSE or PD PI Runbalance spec
 - However worst case models *do* indicate:
 - Worst case current occurs in a positive pair
 - Positive pair current is not sensed

Annex A - Simulated Circuit Example

