

System Unbalance Requirements

David Stover, Michael Paul

Problem Statement: PSE Unbalance Requirements

- PSE unbalance is governed by multiple requirements
 - •I_{Con-2P-unb} (Section 33.2.8) defines an unbalance requirement -I_{Con-2P-unb} min, I_{Con} define the maximum unbalance allowed at PSE PI
 - •R_{PSE} calculations (Annex 33B) define an unbalance requirement -R_{load_min}, R_{load_max} define the maximum unbalance allowed at PSE PI
 - •These requirements disagree
- For well-balanced PSEs to implement I_{Con-2P-unb} min and comply with normative statements in Annex 33B, R_{PSE} > 1Ω is required

PSE Unbalance Requirements: Section 33.2.8

- •A compliant PSE shall...
 - provide at least $I_{Con-2P-unb}$ min on a particular pairset
 - provide at least I_{Con} total on both pairsets

• $\frac{I_{Con-2P-unb}}{I_{Port-2P-other}}$ (K_{class}) defines an unbalance requirement at the PSE PI

PSE Class	P _{Class}	I _{Con} (Eq. 33–8)	I _{Con-2P-unb} (Table 33–17)	I _{Port-2P-other} (Eq. 33–7)	K _{class}
5	45	0.90 (45W/50V)	550mA	350mA	<u>1.57</u>
6	60	1.20 (60W/50V)	682mA	518mA	<u>1.31</u>
7	75	1.44 (75W/50V)	777mA	663mA	<u>1.17</u>
8	90	1.73 (90W/52V)	925mA	805mA	<u>1.15</u>

PSE Unbalance Requirements: Annex 33B (R_{PSE}, R_{load})

•A compliant PSE shall...

- meet current unbalance requirements (R_{PSE_min}, R_{PSE_max}, and I_{Con-2P-unb}) with R_{load_max}, R_{load_min}

• $\frac{R_{load}max}{R_{load}min}$ (K_{load_ratio}) defines an unbalance requirement at the PSE PI

PSE Class	R _{load_min}	R _{load_max}	K _{load_ratio}	Channel Resistance
5	0.723	1.628	<u>2.25</u>	"low"
6	0.623	1.289	<u>2.07</u>	
7	0.590	1.090	<u>1.85</u>	
8	0.544	0.975	<u>1.79</u>	
5	5.920	7.190	<u>1.22</u>	"high"
6	5.780	7.000	<u>1.21</u>	
7	5.710	6.870	<u>1.20</u>	
8	5.650	6.790	<u>1.20</u>	

Conflict: PSE Unbalance Requirements Disagree

•A compliant PSE is...

- allowed to implement $I_{\mbox{Con-2P-unb}}$ min
- required to satisfy K_{load_ratio} for $R_{\text{load}_min},\,R_{\text{load}_max}$
- Below some arbitrary R_{PSE} ...
 - well-balanced PSEs implementing valid I_{Con-2P-unb} min will fail when plugged into Annex 33B test circuit (K_{load_ratio})
 - there exists no R_{PSE_min} , R_{PSE_max} to overcome R_{load_min} , R_{load_max} unbalance

Channel Resistance	Class	K _{class}	K _{load_ratio}
Min	5	1.57	2.25
	6	1.31	2.07
	7	1.17	1.85
	8	1.15	1.79
Max	5	1.57	1.22
	6	1.31	1.21
	7	1.17	1.20
	8	1.15	1.20

Conclusions

- Loosening unbalance requirements for PD (for example) reduces unbalance tolerances on PSE and link segment
 - As R_{PSE} , R_{CH} decrease in magnitude, correcting any R_{PD} unbalance in excess of total system unbalance requirements is impossible
- Increasing unbalance margin of any particular object precludes efficient system design

Conclusions, cont'd.

- The goal of all unbalance requirements is to guarantee interoperability up to some maximum system unbalance
 - Ideally, the ratios of each component (R_{PSE}, R_{CH}, and R_{PD}) should not introduce unbalance in excess of the maximum system unbalance ratio (K_{class})

Proposed Remedy

Revise Section 33.3.8.10 (PD Unbalance Requirements)
Modify unbalance requirement to match implicit ratio of I_{Con-2P-unb}
Revise Section 33.2.8.4.1 (PSE Unbalance Requirements)
Adopt 33.3.8.10 with modifications, replacing R_{source} references with R_{load}
Remove Annex 33B

Proposed Remedy: 33.2.8.4.1 R_{PSE} Test Method, Revised

• R_{PSE} unbalance is limited (Section 33.2.8.4.1)

– Section 33.3.8.10: "...R_{load_min} and R_{load_max}, where

 $R_{load_max} = K_{class} * R_{load_min}$, and

 R_{load_min} is in the range of 0.168 Ω to 5.28 Ω ..."

PSE Maximum Supported Class	K _{class}
5	1.57
6	1.31
7	1.17
8	1.15

$$\frac{K_{class} * (R_{pse_min} + R_{load_min})}{R_{pse_min} + R_{load_min}} \leq \frac{I_{Con-2P-unb}}{I_{Port-2p-other}}$$

Proposed Remedy: 33.3.8.10 R_{PD} Test Method, Revised

• R_{PD} unbalance is limited (Section 33.3.8.10)

– Section 33.3.8.10: "...R source_min and R source_max, where

 $R_{\text{source}_{max}} = K_{\text{class}} * R_{\text{source}_{min}}$, and

 R_{source_min} is in the range of 0.168 Ω to 5.28 Ω ..."

PD Class	K _{class}
5	1.57
6	1.31
7	1.17
8	1.15

$$\frac{K_{class} * (R_{pd_min} + R_{source_min})}{R_{pd_min} + R_{source_min}} \leq \frac{I_{Con-2P-unb}}{I_{Port-2p-other}}$$

Problem #1 Example: Perfectly Balanced, Low-Resistance PSE

PD Class	Class 5 (SS)
R_{load_min}	0.723Ω
R _{load_max}	1.628Ω
R _{PSE_a}	0.3Ω
R _{PSE_b}	0.3Ω
P_{Class}/V_{PSE}	0.9A
I _{Con-2P-unb} (Annex 33B)	<u>0.588A</u>
I _{Con-2P-unb} (Table 33–17)	<u>0.550A</u>

Problem #1 Example, cont'd.

• PSEs with ideal balance require $R_{PSE} \ge 0.853\Omega$ to achieve $I_{Con-2P-unb}$ min

- Per 33.3.8.10, PDs are required to draw no greater than I_{Con-2P-unb} when connected to "R_{source}" (unbalance ratio of 1.186:1)
 - •This requirement places additional restrictions on the PSE, requiring PSEs with ideal balance to implement $R_{PSE} \ge 1.262\Omega$

Problem #2 Conflict: 33.3.8.10 R_{PD} Test Method vs I_{Con-2P-unb}

• R_{PD} unbalance is limited (Section 33.3.8.10)

– Section 33.3.8.10: "...R_{source_min} and R_{source_max}, where

 $R_{\text{source}_{max}} = 1.186 * R_{\text{source}_{min}}$, and

 $R_{\text{source min}}$ is in the range of 0.168 Ω to 5.28 Ω ..."

- R_{source} ratio is 1.186:1

- I_{Con-2P-unb} ratio is limited (slide 5)
 - Class 8 I_{Con-2P-unb} ratio is 1.15:1
- R_{PD} unbalance contribution must be matched and large to comply – or actively balanced

