- Option C can be deleted, it does not address the issue (PClass Tables must be modified).

- Option B can be deleted, nobody likes this, it can only cause confusion.

L		
1	Com	ment (Clause 145.2.7, #45, Page 151, L15)
2	Table	145-11 and the following text in page 150 lines 9-11:
3	" PSE	implementations may use $VPSE = VPort PSE-2P$ min and RChan = RCh when powering using a
4	single	pairset, or RChan = RCh/2 when powering using two pairsets to arrive at over-margined values as
5	shown	<u>in Table 145–11</u> "
6		
7	Therea	are few problems:
8	a)	If we plug the worst-case values of Vpse and Rch in Equations 145-2 and 145-3, we will not get the
9		over margined fixed values in Table 145-11. There are significant unexplained differences in the
10		specification.
11	b)	Class 1-3 value differences could be justified when Type 1 and Type PSEs was part of the 802.3bt
12		spec. Now they are in separate clause 33.
14	c)	The value RCh=20 O for Type 1 is not realistic and should not imposed on Type 3 and 4 PSE systems
15	•)	and even if we impose it, the Pclass values will be lower than Table 145-11.
16		
17	(b	Table 145-11 numbers for Pclass define for class 1-6 with Type 4 PSEs are much lower due to lower
18	α,	Rch and/or higher Vnse min
19		
20	e)	The PSE can set the true minimum PClass and PClass-2P by using Equation 145-2 and 145-3 as the
21		intent of this spec but currently this objective is not met.
22		
23	f)	In addition, Vpd per the assigned class need to be verified per the above arguments.
25		
26	The so	lution for the problems above consist of 3 elements:
27	1.	To disconnect between Table 145-11 and how we get the over-margined value, for example:
28	" PSE	implementations may use VPSE = VPort PSE-2P min and RChan = RCh when powering using a
29	single	pairset, or RChan = RCh/2 when powering using two pairsets to <u>arrive at over-margined values</u> .
30	shown	<u>in Table 145–11</u> "
31		
32	2.	Clarify that the values in Table 145-11 are based on the lower PSE type used per the assigned class
33		which will generate the maximum Pclass or Pclass-2P.
34		
35	3.	To update Table 145-11 numbers per the overmargined values obtained from Equation 145-2 AND
36		145-3 when the worst case relevant Type parameters are used. See Annex A for details.
37		
38		
39		

1 Discussion:

2 In some rows in the table below, the actual calculated worst case values per Equations

145-2 and 145-3 are significantly lower that the values in Table 145-11.

Table 145–11—Physical Layer power classifications

 $P_{\text{Class}} = \left\{ V_{\text{PSE}} \times \left(\frac{V_{\text{PSE}} - \sqrt{V_{\text{PSE}}^2 - 4 \times R_{\text{Chan}} \times P_{\text{Class}} \cdot p_D}}{2 \times R_{\text{Chan}}} \right) \right\}_{\text{W}}$ (145–2)

The minimum output power a PSE supports on a pairset for PSEs connected to a dual-signature PD is defined by Equation (145–
 3). PSE implementations may use VPSE = VPort_PSE-2P min and RChan = RCh to arrive at over-margined values as shown in
 Table 145–11. PClass-2P may subsequently be adjusted using Data Link Layer classification.

$$P_{\text{Class-2P}} = \left\{ V_{\text{PSE}} \times \left(\frac{V_{\text{PSE}} - \sqrt{V_{\text{PSE}}^2 - 4 \times |R_{\text{Chan}} \times P_{\text{Class}} - 2 \times R_{\text{Class}}}{2 \times R_{\text{Chan}}} \right) \right\}_{\text{W}}$$
(145–3)

PClass fixed values vs. calculated values. Yair Darshan, May 2017 Rev003 Page 2 of 10

The differences between calculations per Equations 145-2 and 145-3 and Table 145-11.

~
2
-

		This column information is no longer part of clause 145				
Requested Class	Spec. Table 145-11	Type 1/2 over 2-pairs	Type 3 Over 2-pairs	Type 4 Over 2-pairs	Type 3 Over 4-pairs	Type 4 Over 4-pairs
1	4W	4.006	3.92	3.91	3.88	3.88
2	7W	6.996	6.716	6.7	6.6	6.59
3	15.4W	15.4	14	13.89	13.45	13.42
4	30W	30	30	29.53	27.37	27.21
5	45W			45.02	45.08	44.6
6	60W				60	59.06
7	75W					75
8	90W					90.04
Max Diff[W]		0.006	1.4	1.51	2.63	2.79

Values that are >|0.1W| from the spec are marked with RED color.

4

Notes: Type 1,2 class 1-4 calculations per Equation 145-3 meets Table 145-11. They were calculated with Vpse=44V and Rch=20 Ω.

Type 3 class 1-3 calculated values per Equation 145-3 are lower than Table 145-11 values. They were calculated with Vpse=50V and Rch=12.5 Ω .

Type 4 class 1-4 calculated values per Equation 145-3 are different than Table 145-11 values. They were calculated with Vpse=52V and Rch=12.5 Ω .

Type 3 class 1-4 calculated values per Equation 145-2 are different than Table 145-11 values. They were calculated with Vpse=50V and Rchan=6.25 Ω.

Type 4 class 1-5 calculated values per Equation 145-2 are different than Table 145-11 values. They were calculated with Vpse=52V with and Rchan=6.25 Ω.

BASELINE STARTS HERE

1 Suggested Remedy

2 There are 3 options. Options B and C are shown in the annexes for reference.

3 Option A (Based on the calculations in Annex A)

1. Modify Pclass and Pclass -2P in Table 145-11 per the following:

			ng these numbers down to 10m	no these purchase down to 10mW room	no these numbers down to 10mW recolution is
ng the nd to 1	ng these numbers nd to 100mW resc	ng these numbers down t nd to 100mW resolution.	ng these numbers down to 10m	ng these numbers down to 10m/v resond to 100m/v resond to 100mW resolution.	ng these numbers down to 10mvv resolution is nd to 100mW resolution.
icall	ically, Class 5 sl	ically, Class 5 should be	ically, Class 5 should be 45W	ically, Class 5 should be 45W not 45.	ically, Class 5 should be 45W not 45.1W.
		Doos not moto	Dean not motob D2 4	Dece not motoh D2 4 toxt in	Dess not motob D2.4 toyt, por door
	Please	Please check.	Please check.	Please check.	Please check.

6 7

4 5

2. Modify the following text:

8 The minimum power output a PSE supports for the PD's assigned Class, when powering a single-signature PD, or
9 supplying power in 2-pair mode, is defined by Equation (145–2). PSE implementations may use VPSE = VPort_PSE10 2P min when powering using a single pairset, or RChan = RCh/2 when powering using two pairsets to arrive at over11 margined values_ as shown in Table 145–11 shows over-margined values for worst case PSE Type parameters. PClass
12 may subsequently be adjusted using Data Link Layer classification.

$$F_{\text{Class}} = \left[V_{1952} * \left(\frac{V_{1952} - \sqrt{V_{1952}^2 - 4 + R_{\text{Class}} + P_{\text{Class}, R2}}}{2 \times \tilde{R}_{\text{Class}}} \right) \right]_{\text{W}}$$

The minimum output power a PSE supports on a pairset for PSEs connected to a dual-signature PD is defined by
Equation (145–3). PSE implementations may use VPSE = VPort_PSE-2P min and RChan = RCh to arrive at overmargined values. as shown in Table 145–11 shows over-margined values for worst case PSE Type parameters.
PClass-2P may subsequently be adjusted using Data Link Layer classification.

$$P_{\text{Class,IP}} = \left\{ P_{\text{PSE}} \circ \left(\frac{P_{\text{PSE}} - \sqrt{p_{\text{PSE}}^2 - 4 \circ |Z_{\text{Class}} \circ P_{\text{Class},\text{PD,IP}}}}{2 \circ R_{\text{Class}}} \right) \right\}_{\text{W}}$$

Same here.

(145-2)

18 19

3. Modify Table 145-28 for Vport_PD-2P as follows (See Annex C for details):

	From	То
Class 1	42.1	48
Class 2	40.8	47
Class 0,3	37	44
Class 4	42.5	42.5
Class 5, single-signature PD	44.3	44.3
Class 5, dual-signature PD	41.2	41.2
Class 6	42.5	42.5
Class 7	42.9	42.9
Class 8	41.2	41.2

End OF Baseline

1 Annex A: Option A calculations for D2.5

2

3 Notes:

- 4 1. Type 1 and Type 2 PSEs are not part of clause 145.
- Type 1 and Type 1 PDs need to be supported by Type 3 and Type 4 PSEs according to Table 145-1 RCh=12.5Ω
 and not RCh=20Ω. Therefore, the case of RCh=20Ω is not part of the calculations to derive the spec for
 clause 145.
- The numbers for option A were rounded to the next 2 decimal point accuracy. In addition, the numbers for option A for class 1-4 were calculated to be the maximum of 2-pairs and 4-pairs values regardless if it is
 Type 3 or Type 4 (since there is only one value column for both PSE types and PSE may work on 2-pairs or 4-pairs).

				(Rounded numbers to 2 decimal								
				point, to be used for Option 2)			Option A					
	Not part of	Part of clause 145 SPEC				Part of clause 145 SPEC						
Vpse	44	50	52	50	52	50	52		Pclass [W]	Pclass-2P[W]		
Rch	20	20	20	12.5	12.5	6.25	6.25					
	Type 1,2	Type 3	Type 4	Type 3	Type 4	Type 3	Type 4					
	Pclass 2-pais[W]			Pclass 2-pais[W] Pclass 4-pais[W]								
Class 1	4.006	3.966	3.956	3.917	3.911	3.878	3.875	3.92	max(2-pairs, 4-pairs)	3.92	max(2-pairs)	
Class 2	6.996	6.867	6.836	6.715	6.697	6.599	6.590	6.72	max(2-pairs, 4-pairs)	6.72	max(2-pairs)	
Class 3	15.400	14.672	14.506	13.977	13.892	13.452	13.416	13.98	max(2-pairs, 4-pairs)	13.98	max(2-pairs)	
Class 4	30.000	30.000	29.532	30.000	29.532	27.373	27.212	30	max(2-pairs, 4-pairs)	30.00	max(2-pairs)	
Class 5	-	-		-	45.019	45.081	44.597	45.08 max(4-pairs)		45.02	max(2-pairs)	
Class 6	-	-		-	-	60	59.063	60 max(4-pairs)			-	
Class 7	-	-		-	-	-	75.002	75 max(4-pairs)			-	
Class 8	-	-		-	-	-	90.038	90.04	max(4-pairs)		-	

12

1 Annex B: Option B calculations for D2.5

2

4

8

- 3 Notes:
 - 1. Type 1 and Type 2 PSEs are not part of clause 145.
- Type 1 and Type 1 PDs need to be supported by Type 3 and Type 4 PSEs according to Table 145-1 RCh=12.5Ω
 and not RCh=20Ω. Therefore, the case of RCh=20Ω is not part of the calculations to derive the spec for
 clause 145.
 - 3. The numbers for option B were rounded to the next 2 decimal point accuracy.
- 9 4. The numbers for option B for class 1-4 were calculated per each Type separately and the maximum of 2pairs and 4-pairs values for each Type was taken. This is different than Option A where we had one column
 for the values. As we can see, option B is more accurate and there are significant differences between D2.4
 spec and Option B.
- 13

	Not part of	clause 145	spec	ſ	Option B spec						
Vpse	44	50	52	50	50	52	52	Pcla	ass	Pcla	ss-2P
Rch	20	20	20	12.5	6.25	12.5	6.25				
	Type 1,2	Type 3	Type 4	Type 3	Туре 3	Type 4	Type 4	Туре 3	Type 4		
	Pclass 2-pais		Pclass-2P	Pclass	Pclass-2P	Pclass	Pclass		Pclass-2P		
Class 1	4.006	3.966	3.956	3.917	3.878	3.911	3.875	3.92	3.92	3.92	3.92
Class 2	6.996	6.867	6.836	6.715	6.599	6.697	6.590	6.72	6.72	6.72	6.7
Class 3	15.400	14.672	14.506	13.977	13.452	13.892	13.416	13.98	13.98	13.98	13.9
Class 4	30.000	30.000	29.532	30.000	27.373	29.532	27.212	30.00	30.00	30.00	29.53
Class 5	-	-		-	45.081	45.019	44.597	45.08	44.597	-	45.02
Class 6	-	-		-	60.000	-	59.063	60.00	59.063	-	-
Class 7	-	-		-	-	-	75.002	-	75.002	-	-
Class 8	-	-		-	-	-	90.038	_	90.038	_	-

14

1 Option B (Based on the calculations in Annex B)

- 1. Modify Pclass and Pclass -2P in Table 145-11 as follows:
- 2 3

Pcl	ass	Pclas	ss-2P							
Туре 3	Type 4	Туре 3	Type 4							
4 -3.92	4 -3.92	-	-							
7 -6.72	7 -6.72	-	-							
15.4 -14	15.4 -14	-	-							
30	30	-	-							
45 -45.1	45 44.6	-	-							
60	60 -59.1	-								
	75	-	-							
	90	-	-							
_	_	4 3.92	4 3.92							
_	-	7 6.72	7 6.7							
-	-	15.4 14	15.4 13.9							
-	-	15.4 14	15.4 13.9							
-	-	30	30 29.53							
-	-	-	45							

4 5

2. Modify the following text:

The minimum power output a PSE supports for the PD's assigned Class, when powering a single-signature
PD, or supplying power in 2-pair mode, is defined by Equation (145–2). PSE implementations may use
VPSE = VPort_PSE-2P min when powering using a single pairset, or RChan = RCh/2 when powering using
two pairsets to arrive at over-margined values. as shown in Table 145–11 shows over-margined values for
worst case PSE Type parameters. PClass may subsequently be adjusted using Data Link Layer
classification.

12
$$F_{Class} = \left[F_{PS2} * \left[\frac{F_{PS2} - \sqrt{F_{PS2}^2 - 4 + R_{Class} + P_{Class} - R_2}}{2 \times R_{Class}} \right] \right]_{W} \qquad (145-2)$$

The minimum output power a PSE supports on a pairset for PSEs connected to a dual-signature PD is
defined by Equation (145–3). PSE implementations may use VPSE = VPort_PSE-2P min and RChan = RCh
to arrive at over-margined values. as shown in Table 145–11 shows over-margined values for worst case
PSE Type parameters. PClass-2P may subsequently be adjusted using Data Link Layer classification.

$$P_{\text{Class.3P}} = \left\{ P_{\text{PSE}} * \left(\frac{P_{\text{PSE}} - \sqrt{P_{\text{PSE}}^2 - 4 \cdot s \left[R_{\text{Class}} + P_{\text{Class.PD-3P}} \right] }{2 \cdot R_{\text{Class}}} \right)_{\text{W}}$$
(145-3)

1 Option C (significant differences between the actual worst case numbers and Table 145-11 values)

3 *Modify the following text:*

The minimum power output a PSE supports for the PD's assigned Class, when powering a single-signature
PD, or supplying power in 2-pair mode, is defined by Equation (145–2). PSE implementations may use
VPSE = VPort_PSE-2P min when powering using a single pairset, or RChan = RCh/2 when powering using
two pairsets to arrive at over-margined values. as shown in Table 145–11 shows over-margined values for
worst case PSE Type parameters. PClass may subsequently be adjusted using Data Link Layer
classification.

$$F_{Class} = \left[F_{PS2} + \left[\frac{F_{PS2} - \int P_{PS2}^2 - 4 + R_{Class} + P_{Class} + P_{Class}}{2 \times R_{Class}} \right] \right]_{W} \qquad (145-2)$$

11 The minimum output power a PSE supports on a pairset for PSEs connected to a dual-signature PD is

- defined by Equation (145–3). PSE implementations may use VPSE = VPort_PSE-2P min and RChan = RCh
- 13 to arrive at over-margined values. as shown in Table 145–11 shows over-margined values for worst case
- 14 <u>PSE Type parameters</u>. PClass-2P may subsequently be adjusted using Data Link Layer classification.

$$P_{\text{Class-2P}} = \left\{ V_{\text{PSE}} \times \left(\frac{V_{\text{PSE}} - \sqrt{V_{\text{PSE}}^2 - 4 \times |R_{\text{Class}} \times P_{\text{Class}, \text{PD-2P}}}{2 \times R_{\text{Class}}} \right) \right\}_{\text{W}}$$
(145-3)

16

10

1 Annex C – PD input voltage calculations

2

	Type 1,2	Туре 3	Type 4	Туре 3	Type 4	Type 3	Type 4
	2P	2P	2P	2P	2P	4P	4P
	20 for class 1-3 12.5 for						
Rch	class 4	20	20	12.5	12.5	12.5	12.5
Class 1	42.18	48.41	50.48	49.02	51.06	49.52	51.53
Class 2	40.82	47.25	49.37	48.32	50.39	49.18	51.21
Class 3	37.00	44.13	46.42	46.51	48.66	48.32	50.39
Class 4	42.50	42.50	44.90	42.50	44.90	46.58	48.73
Class 5					41.18	44.36	46.64
Class 6						42.50	44.90
Class 7							42.99
Class 8							41.18

