4P-MPS For PDs with low standby v152

Lennart Yseboodt, Matthias WendtPhilips Research
May 5, 2015

Design goals of MPS

The purpose of MPS is to remove power when the PD is physically disconnected.

- Require as little power as technically feasible
- Straightforward implementation (PSE + PD)
- ► Fool proof operation, cable disconnects (including X/Y cable situations) must lead to correct power removal

4P operation requires new MPS rules that meet these design goals.

For PDs with a low power state it is essential that MPS power is low and implementing it is straightforward and reliable.

PD MPS balance requirements

Requiring the PD to balance the MPS currents is problematic for several reasons:

- PSE induced Vdiff can cause MPS unbalance which PD cannot influence
- Maximum diode Vdiff is not specified in datasheet, making it hard to guarantee a correct design
- ► Temperature effects (uneven heating) can cause increase in unbalance¹
- Uneven aging effect of diodes can cause unbalance to increase over time¹

¹Lighting fixtures have a lifetime \geq 25 year.

MPS proposal

I_{Hold} (Total) Total current the PSE must measure to consider MPS met.

I_{Hold} (1PS) Current the PSE must measure on at least 1 powered pair-set to consider MPS met.

I_{Hold} (Each) Current the PSE must measure on every powered pair-set to consider MPS met.

I_{Port MPS} (Total) Minimum total current the PD must draw

I_{Port MPS} (Each) Minimum current the PD must draw on every powered pair-set

Sig Single-Signature (=SS) or Dual-Signature (=DS) PD Timing PSE or PD should follow the 'old' or 'new' timing

					PD Requirements					
				I _{Hold}				I _{Port_MPS}		
PSE	PD	Sig	Class	Total	1PS	Each	Timing	Total	Each	Timing
	Type 1,2	-	0-4	5-10 mA	-	-	Old	10 mA	-	Old
Type 1,2	Type 3,4	SS	0-4	5-10 mA	-	-	Old	10 mA	-	Old
	Type 3,4	DS	0-4	5-10 mA	-	-	Old	-	10 mA	Old
	Type 1,2	-	0-4	4-9 mA	2-5 mA	-	New	10 mA	-	Old
Tupo 2 /	Type 3,4	SS	0-4	4-9 mA	2-5 mA	-	New	10 mA	-	New
Type 3,4	Type 3,4	SS	5-8	4-14 mA	2-7 mA	-	New	16 mA	-	New
	Type 3,4	DS	0-8	-	-	2-7 mA	New	-	8 mA	New

Supported MPS methods

I_{Hold} (1PS) Current the PSE must measure on **at least 1 powered pair-set** to consider MPS met.

I_{Hold} (Each) Current the PSE must measure on every powered pair-set to consider MPS met.

For Type 1, 2 and single signature (SS) Type 3 and Type 4 PDs, the PSE may choose how to check MPS:

- ► Total: Compare total current (sum of both I_{Port-2P}) to I_{Hold}
- ► 1PS: Compare I_{Port-2P} of pair-set with highest current to I_{Hold}

PDs meeting I_{Port_MPS} guarantee meeting both I_{Hold} (Total) and I_{Hold} (1PS) at the PSE.

Each: Dual signature PDs must guarantee MPS on each pair-set.

L1, LLDP, Autoclass

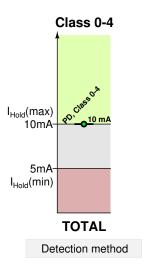
MPS specifications for single signature PDs are different depending on the value of $P_{Class\ PD}$ (greater or smaller than Class 4 power)

- L1 The initial power allocation done through physical layer classification determines the MPS specifications for the PD.
- LLDP If a PD re-negotiates through LLDP it can cross the Class 4 / Class 5 boundary. Such a PD must comply with the specifications associated with the PD class negotiated through LLDP.
- Auto An Autoclass PD must follow the MPS specifications associated with the initial advertised maximum power class.

Conclusion

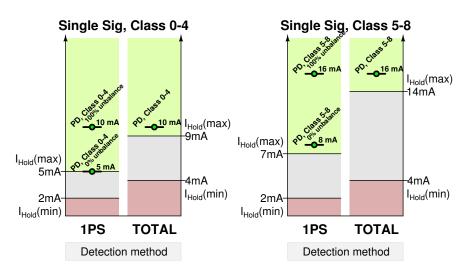
This presentation proposes MPS specifications for Type 3 and Type 4

- Allows PSE flexibility to either look at the sum of MPS currents, or look at the pair-set MPS currents for single signature PDs.
- ► Dual signature PD rules prevent powering disconnected pairs
- MPS is as easy to implement correctly for Type 3/4 as for Type 1/2 PDs

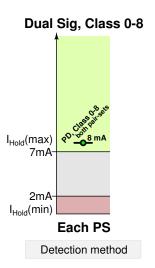

Overview table explained

Alternate methods PSE can				PSE Requirements				PD Requirements			
	choose from			I _{Hold}				I _{Port_MPS}			
	PSE	PD	Sig	Class	Total	1PS	Each	Timing	Total	Each	Timing
	Type 3,4	Type 1,2	-	0-4	4-9 mA	2-5 mA	-	New	10 mA	-	Old
		Type 3,4	SS	0-4	4-9 mA	2-5 mA	-	New	10 mA	-	New
		Type 3,4	SS	5-8	4-14 mA	2-7 mA	-	New	16 mA	-	New
		Type 3,4	DS	0-8	-	-	2-7 mA	New	-	8 mA	New
PSE cannot distinguish between these PD types. Specifications must be identical. Type 1/2 PDs will draw 10mA MPS with old timings.											
		A Type 3 PSE can apply the new MPS timing because it is backward compatible with the old MPS PD timing.									

In case of perfect balance, a PD with 10mA total current will generate 5mA on each pairset, so PSE needs to support 5mA lhold(max) for this case. It is not possible to use the Type 1/2 lhold range of 5-10mA in 4P mode.



Type 1/2 PSE MPS Graphical



Type 3/4 PSE + SS PD MPS Graphical

Type 3/4 PSE + DS PD MPS Graphical

PSE Type 3/4 MPS Rules connected to...

- ▶ PD Type 1, 2 & 3, 4 (single signature, P_{Class_PD} ≤ Class 4)
 - ► I_{Hold} (Total) = 4-9 mA total current, or
 - ► I_{Hold} (1PS) = 2-5 mA on at least 1 powered pairset
 - Support new MPS timings (6 ms / 354 ms)
- ▶ PD Type 3, 4 (single signature, P_{Class_PD} ≥ Class 5)
 - ► I_{Hold} (Total) = 4-14 mA total current, or
 - ► I_{Hold} (1PS) = 2-7 mA on at least 1 powered pairset
 - ► Support new MPS timings (6 ms / 354 ms)
- ► PD Type 3, 4 (dual signature)
 - ► I_{Hold} (Each) = 2-7 mA per pair-set
 - ► Support new MPS timings (6 ms / 354 ms)

PD Type 3/4 MPS Rules connected to...

- ▶ PSE Type 1, 2
 - ► I_{Port MPS} (Total) = 10 mA, total current
 - ► Legacy timing: 75 ms / 250 ms
- ► PSE Type 3, 4 (single signature PD, P_{Class PD} ≤ Class 4)
 - ► I_{Port MPS} (Total) = 10 mA, total current
 - ► New timing: 7 ms / 318 ms
- ► PSE Type 3, 4 (single signature PD, P_{Class_PD} ≥ Class 5)
 - ► I_{Port MPS} (Total) = 16 mA, total current
 - ► New timing: 7 ms / 318 ms
- ▶ PSE Type 3, 4 (dual signature PD)
 - ► I_{Port MPS} (2PS) = 8 mA, on every powered pair-set
 - ► New timing: 7 ms / 318 ms

