### Modify the text per the proposed baseline:

### 33.2.8.4.1 PSE PI pair-to-pair resistance and current unbalance

This section describes unbalance requirements for Type 3 and Type 4 PSEs that operate over 4-pair. The contribution of PSE PI pair-to-pair effective resistance unbalance to the effective system end to end resistance unbalance, is specified by PSE maximum (RPSE\_max) and minimum (RPSE\_min) common mode effective resistance in the powered pairs of same polarity.

The PSE PI pair-to-pair effective resistance unbalance determined by RPSE\_max and RPSE\_min ensures that along with any other parts of the system, i.e. channel (cables and connectors) and the PD, the maximum pair current including unbalance does not exceed ICon-2P-unb as defined in Table 33–17 during normal operating conditions. ICon-2P-unb is the current in the pairset with the highest current in case of maximum unbalance and will be higher than ICon/2. ICon-2P-unb applies for total channel common mode pair resistance from 0.2  $\Omega$  to RCh. For channels with common mode pair resistance lower than 0.2  $\Omega$ , see Annex 33B.

RPSE\_max and RPSE\_min are specified and measured under maximum PClass sourcing conditions. Conformance with Equation (33–14) shall be met for RPSE\_max and RPSE\_min.

### Change from 2.015 to 2.010 for class 6 to match with Equation 33A.4

| R <sub>PSE_max</sub> = | $2.200 \times R_{PSE_{min}} - 0.040$<br>$2.010 \times R_{PSE_{min}} - 0.040$<br>$1.800 \times R_{PSE_{min}} - 0.030$ | for Class 5<br>for Class 6<br>for Class 7 | (33–14) |
|------------------------|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------|---------|
|                        | $1,750 \times R_{\text{PSE}_{\min}} - 0,030$                                                                         | for Class 8 $\int_{\Omega}$               |         |

where

| R <sub>PSE_max</sub> | is, given R <sub>PSE min</sub> , the highest allowable common mode effective resistance in |  |  |
|----------------------|--------------------------------------------------------------------------------------------|--|--|
|                      | the powered pairs of the same polarity.                                                    |  |  |
| R <sub>PSE_min</sub> | is the lower PSE common mode effective resistance in the powered pairs of the              |  |  |
|                      | same polarity.                                                                             |  |  |

The values of RPSE\_max and RPSE\_min are implementation specific and need to satisfy Equation (33–14). RPSE\_max, RPSE\_min and ICon-2P-unb shall be measured according to the tests described in the normative Annex 33B.

#### 33.3.8.10 PD pair-to-pair current unbalance

Single-signature PDs assigned to Class 5 or higher shall not exceed ICon-2P-unb for longer than TCUT-2P min as defined in Table 33–17 on any pair when PD PI pairs of the same polarity are connected to any common source voltage in the range of VPort\_PSE-2P through two common mode resistances, Rsource\_min and Rsource\_max, where Rsource\_max =  $1.186 * \text{Rsource}\_\text{min}$ , and Rsource\_min is in the range of  $0.168 \Omega$  to  $5.28 \Omega$  as shown in Figure  $\frac{33-3933-40}{2}$ .

Dual-signature PDs shall not exceed ICon-2P as defined in Equation (33–7) for longer than TCUT-2P min as defined in Table 33–17 on any pair when PD PI pairs of the same polarity are connected to any common source voltage in the range of VPort\_PSE-2P through two common mode resistances, Rsource\_min and Rsource\_max, where Rsource\_max = 1.186 \* Rsource\_min, and Rsource\_min is in the range of 0.168  $\Omega$  to 5.28  $\Omega$  as shown in Figure 33–3933-40.

Rsource\_min and Rsource\_max represent the Vin source common mode effective resistance that consists of the PSE PI components (RPSE\_min and RPSE\_max as specified in 33.2.8.4.1, VPort\_PSE\_diff as specified in Table 33–17, <u>and the</u> channel resistance and R<sub>PAIR\_PD\_min</sub>, R<sub>PAIR\_PD\_max</sub> specified in 33A.5. See Annex D for derivation of Rsource\_min and Rsource\_max. Common mode effective resistance is the resistance of two conductors of the same pair and their other components (<u>that are forming Rsource</u>) connected in parallel including the effect of <u>the system total pair to pair voltage difference</u> VPort\_PSE\_diff. IA and IB are the pair currents of pairs with the same polarity. See Annex 33A.5 for design guide lines for meeting the above requirements.

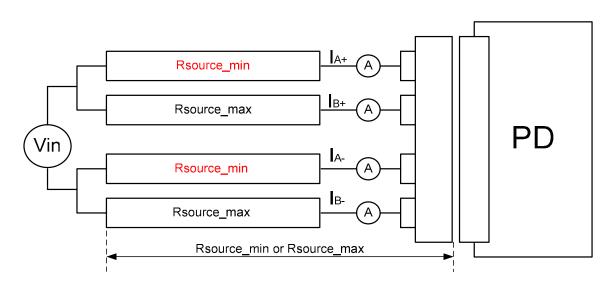



Figure 33–40—PD PI pair-to-pair current unbalance test modelsetup

NOTE 1—Rsource includes test <u>model</u>setup plug resistance Rcon. The maximum recommended Rcon value is 0.02  $\Omega$  however it is test setup implementation specific choice how to meet Rsource\_min and Rsource\_max.

NOTE 2—The pairset current limits should also be met when Rsource\_max and Rsource\_min are swapped between pairs of the same polarity.

## 33A.4 Pair-to-pair channel resistance unbalance requirement for 4-pair operation

Operation using 4-pair requires the specification of resistance unbalance between each two pairs of the channel, not greater than 100 milliohm or resistance unbalance of 7% whichever is a greater unbalance. Resistance unbalance between the channel pairs is a measure of the difference of resistance of the common mode pairs of conductors used for power delivery. Channel pair-to-pair resistance unbalance is defined by Equation (33A–2):

$$\left\{\frac{(R_{ch}\max - R_{ch}\min}{(R_{ch}\max + R_{ch}\min}) \times 100\right\}_{\gamma_{b}}$$
(33A-2)

Channel pair-to-pair resistance difference is defined by Equation (33A-3):

$${R_{ch_{max}} - R_{ch_{min}}}$$
 (33A-3)

where

*R*ch\_max is the sum of channel pair elements with highest common mode resistance

*R*ch\_min is the sum of channel pair elements with lowest common mode resistance Common mode resistance is the resistance of the two wires in a pair (including connectors), connected in parallel.

### 33A.5 PD PI pair-to-pair current unbalance requirements

The following design guide lines may be implemented to ensure PD PI pair-to-pair current unbalance requirements are met:

In the current and previous drafts the order of the equations per class in Equation 33A-4 was reversed. The following order is the correct order according to the original contribution:

|  | $(2.200 \times R_{Pair_{PD}_{min}} + 0.125)$ | for PD Type 3, Class 5 |         |
|--|----------------------------------------------|------------------------|---------|
|  | $2.010 \times R_{Pair_{PD}_{min}} + 0.105$   | for PD Type 3, Class 6 | (33A-4) |
|  | $1.800 \times R_{Pair_{PD}_{min}} + 0.080$   | for PD Type 4, Class 7 | >       |
|  | $1.750 \times R_{Pair_{PD}_{min}} + 0.080$   |                        | 0       |

For PD power above the values shown in Table 33–28 and up to PClass, stringent requirement will be needed to not exceed ICon-2P\_unb by means of smaller constants  $\alpha$  and  $\beta$  in the equation RPair\_PD\_max =  $\alpha \times RPair_PD_min + \beta$ .

Adding missing information regarding the definition of common mode effective resistance as we did in PSE part.

RPair\_PD\_max and RPair\_PD\_min represent PD common mode input effective impedance-resistance of pairs of the same polarity. Common mode effective resistance is the resistance of two conductors of the same pair and their other components connected in parallel including the effect of PD pair-to-pair voltage difference of pairs with the same polarity (e.g. Vf1-Vf3). The common mode effective resistance Rn is the measured voltage Veff\_pd\_n, divided by the current through the path as described below and as shown in the example in Figure 33A-4, where *n* is the pair number.

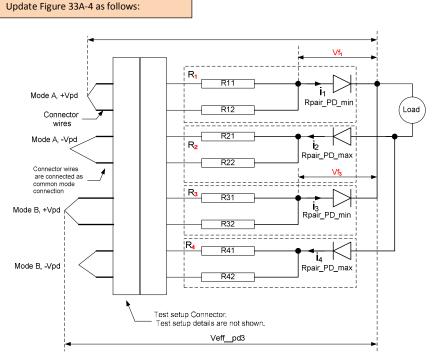



Figure 33A–4—PD resistance unbalance elements overview

Positive pairs:  $R_1$ = RPair\_PD\_min =Veff\_pd1/i1  $R_3$ = RPair\_PD\_max =Veff\_pd3/i3 Negative pairs:  $R_2$ = RPair\_PD\_min =Veff\_pd2/i2  $R_4$ = RPair\_PD\_max =Veff\_pd4/i4

Review and Updates for pair-to-pair unbalance requirements for D2.0. September 2016. Yair Darshan

# Annex 33B

(normative) Insert Annex 33B after Annex 33A as follows:

# PSE PI pair-to-pair resistance/current unbalance

End to end pair-to-pair resistance/current unbalance (E2EP2PRunb) refers to current differences in powered pairs of the same polarity. Current unbalance can occur in positive and negative powered pairs when a PSE uses all four pairs to deliver power to a PD.

Current unbalance requirements (Rpse\_min, RPSE\_max and Icon-2P\_unb) of a PSE shall be met with Rload\_max and Rload\_min as specified by Table 33B-1. The details for derivation of Rload\_max and Rload\_min, which are composed of compliant channel and PD effective resistances, can be found in Annex 33D.

A compliant unbalanced load, <u>Rload minRload and Rload max</u> consists of the channel (cables and connectors) and the PD effective resistances and PSE PI effective resistance. See Annex D.

Equation (33–14) is described in 33.2.8.4.1, specified for the PSE, assures that E2EP2PRunb will be met in a compliant 4-pair powered system. Figure 33B-1 illustrates the relationship between PSE PI Equation (33–14) and Rload\_min and Rload\_max as specified in Table 33B-1.

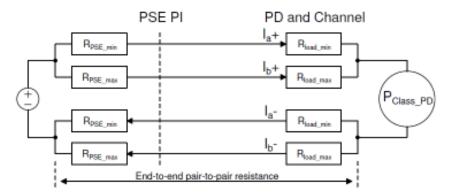
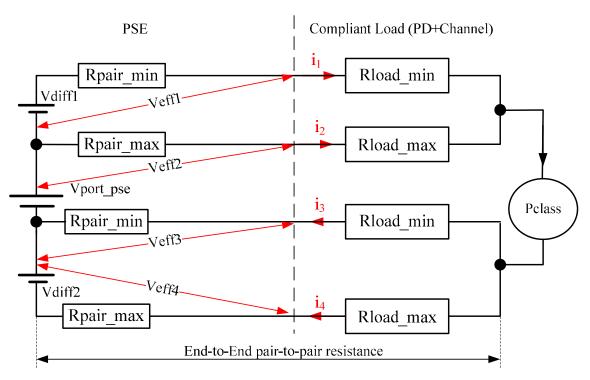



Figure 33B-1—PSE PI unbalance specification and E2EP2PRunb

Equation (33–14) specifies the PSE effective resistances required to meet E2EP2PRunb in the presence of all compliant, unbalanced loads attached to the PSE PI. There are three alternate test methods for RPSE\_max and RPSE\_min and determining conformance to Equation (33–14) and to Icon-2P\_unb.


Measurement methods to determine RPSE\_max and RPSE\_min and Icon-2P\_unb are defined in 33B.1, 33B.2, and 33B.3.

# 33B.1 Direct RPSE measurement

If there is access to internal circuits, effective resistance may be determined by sourcing current in each path corresponding to maximum PClass operation, and measuring the voltage across all components that contribute to the effective resistance, including circuit board traces and all components passing current to the PSE PI output connection. The effective resistance is the measured voltage Veff, divided by the current through the path e.g. the effective value of RPSE\_min for i1 is RPSE\_min =Veff1/i1 as shown in Figure33B-2.

| PSE Class | Rload_min, $[\Omega]$ | Rload_max, $[\Omega]$ | Additional Information   |
|-----------|-----------------------|-----------------------|--------------------------|
| 5         | 0.723                 | 1.628                 | Rload is at low channel  |
| 6         | 0.623                 | 1.289                 | resistance conditions    |
| 7         | 0.590                 | 1.090                 |                          |
| 8         | 0.544                 | 0.975                 |                          |
| 5         | 5.920                 | 7.190                 | Rload is at high channel |
| 6         | 5.780                 | 7.000                 | resistance conditions    |
| 7         | 5.710                 | 6.870                 |                          |
| 8         | 5.650                 | 6.790                 |                          |

Table 33B-1—Rload\_max and Rload\_min requirements





## 33B.2 Effective resistance Rpse measurement

Figure 33B-3 shows a possible test circuit for effective resistance measurements on a PSE port for evaluating conformance to Equation (33–14) if the internal circuits are not accessible. In Figure 33B-3, the positive pairs of the same polarity are shown as an example. The same concept applies to the negative pairs.

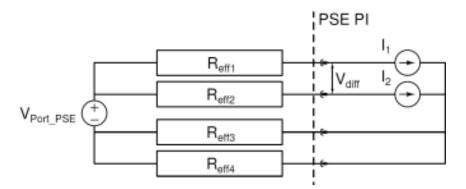
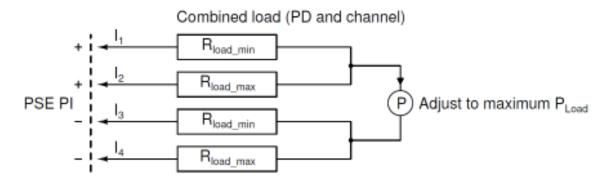



Figure 33B-3 – Effective resistance test circuit

The Effective Resistance Test Procedure is described below:

- 1) With the PSE powered on, set the following current values
  - a. 10 mA < I2 < 50 mA
    - b.  $I_1 = 0.5 \times (P_{max}/V_{port}) I_2$
- 2) Measure Vdiff.
- 3) Reduce I1 by 20% (=I1'). Ensure I2 remains unchanged.
- 4) Measure Vdiff' in the same mannar as  $V_{diff.}$
- 5) Calculate Reff1:

Reff1 = [(Vdiff) - (Vdiff')] / (I1 - I1')


- 7) Repeat procedure for Reff2, with I1, I2 values swapped.
- 8) Repeat procedure for Reff3, Reff4.

9) Evaluate compliance of Reff1 and Reff2 with Equation (33–14). Evaluate compliance of Reff3 and Reff4 with Equation (33–14).

The effective resistance test method applies to the general case. If pair-to-pair balance is actively controlled in a manner that changes effective resistance to achieve balance, then the current unbalance measurement method described in 33B.3 shall be used.

# 33B.3 Current unbalance measurement

The following method may be used if the internal PSE circuits are not accessible or if the PSE is using active or passive current balancing circuitry that results in a variable effective resistance to control current unbalance. The current unbalance requirement shall be met for any pairs of the same polarity and with the load resistances per Table 33B–1. A PSE which uses current balancing methods and meets the current unbalance measurement test by definition also meets Equation (33–14). Figure 33B–4 shows a test circuit for the current unbalance requirements.



# Figure 33B-4--Current unbalance test circuit

The current unbalance test method is described below:

1) Use Rload\_min and Rload\_max from Table 33B-1 for Rload at low channel resistance conditions.

- 2) With the PSE powered on, adjust the load for maximum power at the PSE.
- 3) Measure I1, I2.

4) Swap Rload\_max, Rload\_min, repeat steps 1 and 2.

5) Repeat for I3, I4.

6) Verify that the current in each case does not exceed Icon-2P\_unb minimum in Table 33-17.

7) Repeat steps 1-6 for Rload\_min and Rload\_max from Table 33B-1 for for Rload at high channel resistance conditions.

Verification of Icon-2P\_unb in step 6 and 7 confirms that PSE Rpse\_max and Rpse\_min are in conformance to this specifications.

## 33B.4 Channel resistance with less than $0.10.2\Omega$

Icon\_2P\_unb max and Equation 33-14 are specified for total channel common mode pair resistance from  $0.10.2\Omega$  to 12.5Ω and worst case unbalance contribution by a PD. When the PSE is tested for channel common mode resistance less than  $0.10.2 \Omega$ , i.e.  $0 \Omega < \text{Rchan-2P} < 0.10.2 \Omega$ , the PSE shall be tested with (Rload\_min - Rchan-2P) and (Rload\_max - Rchan-2P) to meet Icon\_2P\_unb requirements and Rpse\_min and Rpse\_max conformance to Equation (33–14).

### The following is not part of the baseline:

At short cable, what is the resistance in this case. Is it 0.1  $\Omega$  or 0.2  $\Omega$  in our simulations and calculations across the specifications?

For finding Kipeak and doing the curve fit for it, the simulation was run from 0.25  $\Omega$  to 12.5  $\Omega$ . 0.25  $\Omega$  is 2m channel (12.5  $\Omega$ /100m=0.125  $\Omega$ /m which is from 2m to 100m).

For calculating Icon-2P\_unb, Ipeak-2P\_unb and as a result ILIM-2P, I have used 2.65m cable as min and 100m cable as max in my simulations with the following parameters:

Rch-2P=0.1\*Channel length \*cordage ohm/m + 0.9\* Channel length \*cable ohm/m

For 2.65m, # of connectors =0. Rch-2P=0.1\*2.65m\*0.0926  $\Omega$  /m+0.9\*2.65m\*0.076  $\Omega$  /m=0.205 ohm. I.e. 2.65m=0.205 ohm  $\rightarrow \sim 0.2$  ohm.

The value is actually lower than 0.2  $\Omega$  due to the cable unbalance (2%).

So in all cases the minimum resistance over 2-Pairs is  $\sim 0.2 \Omega$  and for 4-pairs is 0.1  $\Omega$ .

Note: as regard to 7% or 0.1 ohm channel spec.: the 0.1  $\Omega$  came from 4\*Rdiff=4\*0.05  $\Omega$  =0.2  $\Omega$  for 4 connectors per wire for Rdiff. Two wires in parallel gives minimum resistance of 0.1  $\Omega$  when pair to pair channel resistance difference is considered for the shortest channel length where cable length is zero (theoretical case). So connector Rdiff Is not related to the above subject.