MPS Unbalance v141

Lennart Yseboodt, Dave van Goor, Matthias Wendt Philips Research March 10, 2015

Overview

- ► Explore effect of diode forward voltage unbalance at low currents
- Temperature effect on diodes
- End to end MPS current unbalance
- Consequences for MPS design
- Proposal for MPS requirements

Measurement method

This presentation will explore measured difference in diode voltage over a number of different diodes at low current.

- Test currents: 100 μA, 1 mA, 5 mA, 10 mA, 20 mA
- Diodes: MBRM1H100, MBRM2H100, MBRS2H100, MBRS1100, MBRS1100T, MURS110, MURS210, NTSS2100ET1, NTSS2100T1, SS210, VSSA210E361T
- DUT at stable room temperature
- Total 720 measured diodes

Example results

Vdiff = highest measured V_D - lowest measured V_D at test current.

Vdiff overview

Conclusion Vdiff measurement

- Results match with match an_02_0115.pdf
- ► In the current range 100 µA to 20 mA the diode voltage <u>difference</u> remains constant, but <u>absolute</u> diode voltage goes up with current
- Of all measured diodes, the maximum sample to sample difference (for the same partnumber) is 32 mV
- Comparing a batch of diodes, purchased from 1 reel, to a combination of two batches (different time, different reel) increases the maximum diode voltage different by 6 mV
- Silicon or Schottky diodes exhibit the same amount of maximum voltage difference
- ... however, this is all measured at a stable constant temperature.

End to end MPS unbalance

- Measured pair-set current over 0.25 Ω precision resistor (resistors matched better than 1%).
- Tested with various cable lengths (1 m, 10 m)
- Diode: MBRS1100T & SS210
- ▶ Test to fail: introduce temperature difference \rightarrow can we fail MPS ?

Measurement results 1

- ► I_{Port}: 22 mA
- 10 meter CAT5e
- Diode: MBRS1100T
- Vdiff(max): 34 mV
- Applied 25 °C difference between diode bridges (43 °C / 68 °C)
- Current unbalance 5% → 45%

MBRS1100T, CAT5e, 10 meter, Tdiff 25C

Measurement results 2

- ► I_{Port}: 22 mA
- 10 meter CAT5e
- ► Diode: SS210
- Vdiff(max): 10 mV
- Applied 20 °C difference between diode bridges (40 °C / 60 °C)
- Current unbalance
 -2% → 28%

SS210, CAT5e, 10 meter, Tdiff 20C

Conclusion system measurements

System end to end low current unbalance measurements show:

- ► Initial (room-temperature) low current unbalance looks good
- ► Temperature difference between diodes creates large unbalance
- ► Temperature effect is potentially far greater than intrinsic Vdiff. Temperature coefficient -2.0 mV/°C
- ► Maximum Vdiff is not a typically specified parameter in datasheets
- Other effects, like aging, are hard to predict

PDs will need a carefully designed input stage to control unbalance if a low power mode is needed. Use of diode rectifiers is probably not recommended if the PD must ensure a per pairset MPS.

MPS proposal

Current the PSE must see on powered pairset(s) to consider MPS OK.
Total current the PSE must see on both pairsets to consider MPS OK.
PSE requires MPS to be met on both pairsets.
Allowed MPS methods: sum-pairset and max-pairset
Minimum current the PD must guarantee per powered pairset
Minimum total current the PD must guarantee
PSE or PD should follow the 'old' or 'new' timing

		PSE Requirements				PD Requirements		
PSE	PD	I _{Hold 2P}	I _{Hold 4P}	Timing	Sum/Max	IPORT_MPS /2P	I _{Port_MPS}	Timing
Туре 1,2	Type 1,2	5-10 mA	-	Old	-	-	10 mA	Old
	Type 3,4 Class \leq 4	5-10 mA	-	Old	-	-	10 mA	Old
	Type 3,4 Class \geq 5	5-10 mA	-	Old	-	-	10 mA	Old
	Type 3,4 2-channel	5-10 mA	-	Old	-	-	10 mA	Old
Type 3,4	Type 1,2	-	5-10 mA	New	Yes	-	10 mA	Old
	Type 3,4 Class \leq 4	-	5-10 mA	New	Yes	-	22 mA	New
	Type 3,4 Class \geq 5	2-7 mA	-	New	Yes	7 mA	-	New
	Type 3,4 2-channel	2-7 mA	-	New	No	7 mA	-	New

Type 3/4 PSE MPS Rules

▶ PD Type 1, 2, 3, 4[≤ Class 4]

- ► I_{Hold} = 5-10 mA, total current (no balance requirement)
- Support new MPS timings (6 ms / 354 ms)
- ► MPS methods: per-pairset, sum-pairset, max-pairset

▶ PD Type 3, 4 [≥ Class 5]

- ► I_{Hold} = 2-7 mA per pairset
- Support new MPS timings (6 ms / 354 ms)
- MPS methods: per-pairset, sum-pairset, max-pairset

PD Dual channel

- ► I_{Hold} = 2-7 mA per pairset
- Support new MPS timings (6 ms / 354 ms)
- MPS methods: per-pairset, sum-pairset, max-pairset

Type 3/4 PD MPS Rules

▶ PSE Type 1, 2

- I_{Port MPS} = 10 mA, total current (no balance requirement)
- Legacy timing: 75 ms / 250 ms

▶ PSE Type 3, 4 [≤ 3 class events]

- I_{Port MPS} = 22 mA, total current (no balance requirement)
- New timing: 7 ms / 318 ms

▶ PSE Type 3, 4 [≥ 4 class events]

- I_{Port_MPS} = 7 mA, per pairset
- New timing: 7 ms / 318 ms

Balanced flexibility

The MPS rules in the previous slide are a balance between PSE and PD flexibility and allow a further reduction in standby power.

- Legacy Type 1/2 PDs cannot have any requirement imposed for unbalance at MPS currents.
- Since a PSE cannot distinguish the Type of a PD in classes 0-4, we can apply the legacy MPS rules (amplitude & balance) also to Type 3 PDs of class 0-4, without causing (extra) complications for the PSE.
- ► Type 3/4 single channel PDs in Class 5 or higher must present I_{Port_MPS} on both pair-sets.
- ► Type 3/4 PSEs may also look at the sum of currents or the highest current of both pairsets to consider MPS satisfied.
- Dual channel PDs must present I_{Port_MPS} on both pairsets

Conclusion

- ▶ Measurements of 720 diodes, 11 types, reveal Vdiff(max) < 35 mV
- Parallel diodes cannot be expected to have reliable current sharing behaviour at MPS level currents
- PDs should be able to implement diode rectifiers and support low standby
- This MPS proposal offers balanced design flexibility for PSE and PD
- Diode bridges are possible for Class 4 and below
- PDs without low power modes are not impacted by this unbalance issue

Propose for .bt group to adopt MPS rules in this presentation.

Diode equation

$$I = I_{s} \left(e^{\frac{qv}{nkT}} - 1 \right)$$
$$I_{s} = qA \frac{Dn_{i}^{2}}{LN_{D}} = qA \frac{D}{LN_{D}}BT^{3} \exp\left(-\frac{E_{G0}}{kT}\right)$$

Silicon diode voltage shifts by about $-2.5 \text{ mV/}^{\circ}\text{C}$ Schottky diode voltage shifts by about $-2.0 \text{ mV/}^{\circ}\text{C}$

Reference: http://www.pveducation.org/pvcdrom/solar-cell-operation/ effect-of-temperature

17 March 10, 2015 Philips Research

Diode measurement results: MBRM1H100T3GALL

Diode measurement results: MBRM2H100T3GALL

Diode measurement results: MBRS1100T3GALL

Diode measurement results: MURS110T3GALL

Diode measurement results: MURS210T3GALL

Diode measurement results: SS210ALL

