Comment (#57, #58): (TDL #513 D2.0).

The following updates to the unbalance requirements are based on the technical principles, 4-pair model and its component values presented Annex D that was used to derive all pair-to-pair unbalance requirements in 802.3bt.

- 1. To verify the accuracy of Equation 33-15 in short cable and Rpse\_min=0.1  $\Omega$
- To add design flexibility in Equation 33-15 to address short cable at Vpse-2P\_min>50V, 52V. (will be done for next meeting if still will be required by the group)

### Analysis for the following conditions per the 4-pairs model and its data base<sup>1</sup>:

- Short cable (per the 4-pairs model it is channel with 2.65m long and zero connectors which generate RCH\_max =~0.1 Ω).
- PSE contribution to system unbalance for class 6. Rpse\_max per Equation 33-15 and Rpse\_min =0.1  $\Omega$
- Rload\_max and Rload\_min (33B-1, Table 33B-1 and Figure 33B-1) for class 6. **Results:**
- In simulation, we get accurate results for Icon-2P\_unb that meets the spec.
- When using single calculation iteration of Icon-2P\_unb: Icon-2P\_unb is deviates by +9mA (error=1.31% ).
- When using two calculation iterations by subtracting Rload\_min and Rload\_max power loss from Ppd, error is reduced and we meet the spec.
- When using two calculation iterations by when breaking Rload to Rch and Rpair\_PD and subtracting Rpair PD loss from Ppd, error is reduced and we meet the spec which prove the point above that for short cable there is need to break the model from 2 parts to 3 parts.
  - The reason for why without breaking Rload to Rch and Rpair\_PD we get the same good results is that at short cable Rch is negligible compare to Rpair\_PD which is part of the PD.

### **Conclusions:**

- 1. There is no need to calculated Icon\_2P\_unb to meet the spec. The designer need to meet Equation 33-15 only.
- 2. Equation 33-15 is correct and accurate. No changes are needed.
- 3. In order to validate that the PSE vendor meets Equation 33-15, he should use Annex 33-B test models as indicated in the spec.
- 4. For the above use case in short cable, no need to change the model as currently specify in Annex B however it is recommended to do so due to the following:
  - a) It is clearer model that include all necessary information for the designer.
  - b) For long cables, we must break Rload to its Rch and Rpair\_PD components since in this case Rch>Rpair\_PD which will result with significant error.

### Suggested Remedy



## 1. Replace Figure 33B-1 with the following:

### 2. Replace Table 33B-1 with the following.

| PSE Class | RCH_min,<br>[Ω] | RCH_max,<br>[Ω] | RPair_PD_min,<br>[Ω] | RPair_PD_max, [Ω | Rload_min,<br>[Ω] | Rload_max,<br>[Ω] | Additional<br>Information   |
|-----------|-----------------|-----------------|----------------------|------------------|-------------------|-------------------|-----------------------------|
| 5         | 0.087           | 0.1             | 0.636                | 1.528            | 0.723             | 1.628             | D1 1 (                      |
| 6         | 0.087           | 0.1             | 0.536                | 1.189            | 0.623             | 1.289             | low channel                 |
| 7         | 0.087           | 0.1             | 0.503                | 0.99             | 0.59              | 1.09              | resistance<br>conditions    |
| 8         | 0.087           | 0.1             | 0.457                | 0.875            | 0.544             | 0.975             |                             |
| 5         | TBD             | TBD             | TBD                  | TBD              | 5.92              | 7.19              | D1 1                        |
| 6         | TBD             | TBD             | TBD                  | TBD              | 5.78              | 7                 | Rload is at<br>high channel |
| 7         | TBD             | TBD             | TBD                  | TBD              | 5.71              | 6.87              | resistance                  |
| 8         | TBD             | TBD             | TBD                  | TBD              | 5.65              | 6.79              | conditions                  |

[Add to Yair's TDL: TBD will be replaced by numbers in next meeting.]

End of suggested Remedy

# Annex A: Calculation without breaking Rload\_min and Rload\_max to Rch\_min, Rch\_max and Rpair\_PD\_min and Rpair\_PD\_max.

Implication: Due to the fact that:

Rpair\_PD\_min >> Rch\_min and Rpair\_PD\_max >> Rch\_max then the power loss on Rload\_min and Rload\_max is close Rpair\_PD\_min and Rch\_min and Rpair\_PD\_max so we can subtract it from Ppd in order to have total Ppd including Rload power loss.

|                                                               | Inputs         |          | Equation                                    |  |
|---------------------------------------------------------------|----------------|----------|---------------------------------------------|--|
| PSE PI min resistance                                         | Rpse_min       | 0.1      |                                             |  |
| PSE output voltage at open load                               | Vpse           | 50.14    | With correction due to voltage drop on Rpse |  |
| PD power of the constant power sink                           | Ppd            | 51       |                                             |  |
| Spec requirements                                             | lcon_s         | 0.683    |                                             |  |
| PD input power at the PI including only Rpair_PD              |                |          |                                             |  |
| PD input power including Rload                                |                |          |                                             |  |
|                                                               | Outputs 💦      |          |                                             |  |
| PSE PI max resistance calculated per Eq 33-15                 | Rpse_max       | 0.161    | 2.010*Rpes_min-0.04                         |  |
| Rload min per Table 33B-1                                     | Rload_min      | 0.623    | Table 33B-1                                 |  |
| Rload_max per Table 33B-1                                     | Rload_max      | 1.289    | Table 33B-2                                 |  |
| Total pair min resistance from internal PSE source voltage to | Re2e1          | 0.723    | Rpse_min+Rload_min                          |  |
| Total pair max resistance from internal PSE source voltage to | Re2e2          | 1.45     | Rpse_max+Rpse_max                           |  |
| Total resistance of positive pairs of the same polarity       | Re2eP          | 0.482    | Re2e1    Re2e2                              |  |
| Mosfet RDSON                                                  | Rdson          | 0.05     | (for the 2-pairs with the same polarity)    |  |
| Rsense                                                        | Rsense         | 0.05     | (for the 2-pairs with the same polarity)    |  |
| Total resistance of negative pairs of the same polarity       | Re2eN          | 0.582    | Re2eN = Re2eP+Rdson+Rsense                  |  |
| Total system resistance from Vpse to Vpd and back             | Re2e&B         | 1.0649   | Rtotal= Re2eP + Re2eN                       |  |
| PD voltage at the constant power sink point                   | Vpd            | 49.0324  | Vpd=(Vpse+(Vpse^2-4*Ppd*Rtotal)^0.5)/2      |  |
| Total current over 4-pairs                                    | lcon           | 1.0401   | lcon = (Vpse – Vpd) / Rtotal                |  |
| Ent to End Runb                                               | E2ERunb        | 0.3346   | (Re2e2-Re2e1)/(Re2e2+Re2e1)                 |  |
| The pair with the maximum current                             | 11             | 0.6921   | lcon*(1-E2ERunb)                            |  |
| The pair with the minimum current                             | 12             | 0.3563   | lcon*E2ERunb                                |  |
| Deviation from the spec [A]                                   |                | 0.0091   | l1-lcon_s                                   |  |
| Deviation from the spec                                       |                | 1.34%    | (I1-Icon_s)/Icon_s                          |  |
| Recalculating with substruting Rload_min and Rload_max pow    | er loss from P | pd       |                                             |  |
| Total power loss on Rpair_PD_min and Rpair_PD_max             | P_Rpair_PD     | 0.890436 | I1*Rpair_PD_min+I2*Rpair_PD_max             |  |
| PD power of the constant power sink                           | Ppd_net        | 50.10956 |                                             |  |
| PD voltage at the constant power sink point                   | Vpd            | 49.0522  | Vpd=(Vpse+(Vpse^2-4*Ppd*Rtotal)^0.5)/2      |  |
| Total current over 4-pairs                                    | lcon           | 1.0216   | lcon = (Vpse – Vpd) / Rtotal                |  |
| Ent to End Runb                                               | E2ERunb        | 0.3346   | (Re2e2-Re2e1)/(Re2e2+Re2e1)                 |  |
| The pair with the maximum current                             | 11             | 0.6798   | lcon*(1-E2ERunb)                            |  |
| The pair with the minimum current                             | 12             | 0.3418   | lcon*E2ERunb                                |  |
| Deviation from the spec [A]                                   |                | -0.0032  | l1-lcon_s                                   |  |
| Deviation from the spec                                       |                | -0.47%   | (I1-Icon_s)/Icon_s                          |  |
| Meeting the spec. I1 is 3.2mA below the spec.                 |                |          |                                             |  |

# Annex B: Calculation with breaking Rload\_min and Rload\_max to Rch\_min, Rch\_max and Rpair\_PD\_min and Rpair\_PD\_max. Implication: Rch\_min and Rch\_max power loss will not be included in Ppd. This will be the most accurate

model.

|                                                           | Inputs         |            | Equation                            |  |  |
|-----------------------------------------------------------|----------------|------------|-------------------------------------|--|--|
| PSE PI min resistance                                     | Rpse min       | 0.1        |                                     |  |  |
| PSE output voltage at open load                           | Vpse           | 50.14      | With correction due to voltage drop |  |  |
| PD input power at the PI including only                   | Ppd            | 51         | 1 <sup>st</sup> iteration           |  |  |
| Spec requirements                                         | lcon_s         | 0.683      |                                     |  |  |
|                                                           | Outputs        |            |                                     |  |  |
| PSE PI max resistance calculated per Eq                   | Rpse_max       | 0.161      | 2.010*Rpes_min-0.04                 |  |  |
| Rload min per Table 33B-1                                 | Rload_min      | 0.623      | Table 33B-1                         |  |  |
| Rload_max per Table 33B-1                                 | Rload_max      | 1.289      | Table 33B-2                         |  |  |
| Breaking Rload_min and Rload_max to isola                 | ite Rpair_PD_r | nin and Rp | pair_PD_max                         |  |  |
| Channel P2PRunb                                           | CP2PRunb       | 0.07       |                                     |  |  |
| Channel resistance_min from PSE PI to PD                  | Rch_min        | 0.0869     | Rch_min=Rch_max*(1-                 |  |  |
| Channel resistance_maxfrom PSE PI to PD                   | Rch_max        | 0.1        | Model parameter at 2.65m            |  |  |
| PD PI minimum resistance                                  | Rpair_PD_      | 1.189      | Rload_max-Rch_max                   |  |  |
| PD PI max resistance                                      | Rpair_PD_      | 0.5360     | Rload_min-Rch_min                   |  |  |
| Total pair min resistance from internal                   | Re2e1          | 0.723      | Rpse_min+Rload_min                  |  |  |
| Total pair max resistance from internal                   | Re2e2          | 1.45       | Rpse max+Rpse max                   |  |  |
| Total resistance of positive pairs of the                 | Re2eP          | 0.482      | Re2e1    Re2e2                      |  |  |
| Mosfet RDSON                                              | Rdson          | 0.05       | (for the 2-pairs with the same      |  |  |
| Rsense                                                    | Rsense         | 0.05       | (for the 2-pairs with the same      |  |  |
| Total resistance of negative pairs of the                 | Re2eN          | 0.582      | Re2eN = Re2eP+Rdson+Rsense          |  |  |
| Total system resistance from Vpse to Vpd                  | Re2e&B         | 1.0649     | Rtotal= Re2eP + Re2eN               |  |  |
| PD voltage at the constant power sink                     | Vpd            | 49.032     | Vpd=(Vpse+(Vpse^2-                  |  |  |
| Total current over 4-pairs                                | Icon           | 1.0401     | Icon = (Vpse – Vpd) / Rtotal        |  |  |
| Ent to End Runb                                           | E2ERunb        | 0.3346     | (Re2e2-Re2e1)/(Re2e2+Re2e1)         |  |  |
| The pair with the maximum current                         | 11             | 0.6921     | Icon*(1-E2ERunb)                    |  |  |
| The pair with the minimum current                         | 12             | 0.3563     | Icon*E2ERunb                        |  |  |
| Deviation from the spec [A]                               |                | 0.0091     | I1-Icon_s                           |  |  |
| Deviation from the spec                                   |                | 1.34%      | (I1-Icon s)/Icon s                  |  |  |
| Recalculating by subtracting Rpair PD power loss from Ppd |                |            |                                     |  |  |
| Total power loss on Rpair_PD_min and                      | P_Rpair_P      | 0.7946     | I1*Rpair_PD_min+I2*Rpair_PD_max     |  |  |
| PD power of the constant power sink                       | Ppd net        | 50.205     | 2 <sup>nd</sup> iteration (*)       |  |  |
| PD voltage at the constant power sink                     | Vpd            | 49.050     | Vpd=(Vpse+(Vpse^2-                  |  |  |
| Total current over 4-pairs                                | Icon           | 1.0236     | Icon = (Vpse – Vpd) / Rtotal        |  |  |
| Ent to End Runb                                           | E2ERunb        | 0.3346     | (Re2e2-Re2e1)/(Re2e2+Re2e1)         |  |  |
| The pair with the maximum current                         | 11             | 0.6811     | Icon*(1-E2ERunb)                    |  |  |
| The pair with the minimum current                         | 12             | 0.3424     | Icon*E2ERunb                        |  |  |
| Deviation from the spec [A]                               |                | 0.0019     | I1-Icon s                           |  |  |
| Deviation from the spec                                   |                | 0.13%      | (I1-Icon s)/Icon s                  |  |  |

We can see the error flipped polarity and still stay small. I1<0.683A thus meeting the spec.

#### Annex C: Derivation of Rload max, Rload min and Rsource max, Rsource min.

The following is a short summary of the derivation of some of the PSE and PD pair-to-pair unbalance requirements in 802.3bt **Draft 2.1**.

End to End, Pair to Pair Resistance or Current unbalance (E2EP2PRunb or E2EP2PCunb) is specified by Equation 33D-1.

The term End to End refers to all the components that affect E2EP2PRunb, including components that are in the PSE (See Figure 33B–2 for the PSE side) and in the PD (see Figure 33A–4) (It is not just the Channel components between the PSE PI and PD PI as used in other parts of the specifications).

$$E2EP2PRunb = \frac{(R_{PSE\_max} - R_{PSE\_min}) + (R_{CH\_max} - R_{CH\_min}) + (R_{PAIR\_PD\_max} - R_{PAIR\_PD\_min})}{(R_{PSE\_max} + R_{PSE\_min}) + (R_{CH\_max} + R_{CH\_min}) + (R_{PAIR\_PD\_max} + R_{PAIR\_PD\_min})}$$
(33D-1)

Where E2EP2PRunb

is the end to end, pair-to-pair effective resistance unbalance between two pairs of the same polarity. The effective resistance includes transformation of pair-to-pair voltage difference (in PSE and PD) to resistance elements at the system maximum operating power. When effective resistance is used, E2EP2PRunb is equal to the end to end pair to pair current unbalance E2EP2PCunb. E2EP2PRunb is a system parameter which was derived from 4-pair model simulations using worst case values of max/min resistance elements of all system components and maximum PSE and PD pair to pair voltage difference. This resulted in worst case system pair to pair effective resistance unbalance as function of channel length in meters and maximum pair current under pair-to-pair unbalance conditions.

| R <sub>PSE_min</sub> , R <sub>PSE_max</sub>         | are defined in 33.2.8.4.1 |
|-----------------------------------------------------|---------------------------|
| R <sub>CH_min</sub> , R <sub>CH_max</sub>           | are defined in 33A.4.     |
| R <sub>PAIR PD min</sub> , R <sub>PAIR PD max</sub> | are defined in 33A.5.     |

The use of common mode effective resistance simplifies the math used to derive pair-to-pair unbalance requirements by converting all system pair-to-pair voltage difference (such as VPort\_PSE\_diff which is specified in Table 33-19 or PD pair-to-pair voltage difference which is embedded in equation 33A.4 and in the values of Ipeak\_2P\_unb\_max and in Icon-2P\_unb values) to resistive elements in addition to PSE PI and PD PI resistive elements (R<sub>PSE\_min</sub> and R<sub>PSE\_max</sub> in the PSE and R<sub>PAIR\_PD\_min</sub> and R<sub>PAIR\_PD\_max</sub> in the PD).

When PSE compliance is measured according 33.2.8.4.1 and Annex B, it is verified with Rload\_max and Rload\_min connected to the PSE. Rload\_max and Rload\_min are composed of compliant channel resistances, *R*ch\_min and *R*ch\_max as specified in 33A.4, a compliant PD which is represented by the effective resistances RPair\_PD\_min and RPair\_PD\_max as specified in 33A.5, and is also a function of R<sub>PSE\_min</sub> and R<sub>PSE\_max</sub> according to equation **33D-2**. RPair\_PD\_min and RPair\_PD\_max already includes the effect of PD pair to pair voltage difference of 0.06V for Type 3 PDs and 0.05V for Type 4 PDs that will ensure that at high currents, Iport-2P will not exceed Icon-2P\_unb as required when PSE is tested for compliance.

$$R_{load\_max} = U \times R_{load\_min} + U \times R_{PSE\_min} - R_{PSE\_max}$$
(33D-2)

Where:

$$U = \left(\frac{1 + E2EP2PRunb}{1 - E2EP2PRunb}\right)$$
$$R_{load\_min} = R_{ch\_min} + R_{Pair\_PD\_min}$$
$$R_{load\_max} = R_{ch\_max} + R_{Pair\_PD\_max}$$

PD compliance to the pair-to-pair unbalance requirements of 33.3.8.10 is verified when connected to source voltage with a voltage range of Vport-PSE-2P through the effective resistances Rsource\_max and Rsource\_min.

Updated to Equation 33-15. Yair Darshan, November 2016.

Rsource\_max and Rsource\_min are composed from a compliant channel resistance with  $Rch_min$  and  $Rch_max$  as specified in 33A.4 and a compliant PSE which is represented by the effective resistances  $R_{PSE_min}$ ,  $R_{PSE_max}$  as specified in 33.2.8.4.1 and is also a function of  $RPair_PD_min$  and  $RPair_PD_max$  according to equation 33D-3 which ensures worst case system conditions of PSE, Channel and PD.  $R_{PSE_min}$ ,  $R_{PSE_max}$  already includes the effect of PSE pair to pair voltage difference of 0.01V for Type 3 PSE and Type 4 PSE that will ensure that at high currents, Iport-2P will not exceed Icon-2P\_unb as required when PSE or PD is tested for compliance. See 33A.5 for design guidelines for PD PI effective resistance RPair\_PD\_min and RPair\_max.

$$R_{Source\_max} = U \times R_{Source\_min} + U \times R_{Pair\_PD\_min} - R_{Pair\_PD\_max}$$
(33D-3)

Where:

$$U = \left(\frac{1 + E2EP2PRunb}{1 - E2EP2PRunb}\right)$$
$$R_{source\_min} = R_{ch\_min} + R_{PSE\_min}$$
$$R_{source\_max} = R_{ch\_max} + R_{PSE\_max}$$

The E2EP2PRunb that was used to derive the U value in Equations 33D-2 and 33D-3 above is found at short cable in order to find the worst case unbalance due to the fact that with long cables the unbalance is improved. Maximum pair current due to E2EP2PRunb is not always obtained at the maximum value of E2EP2PRunb. For Type 3 systems, maximum pair current is obtained at Rchan-2P=0.2 $\Omega$  (short cable) where E2EP2PRunb is the highest. For Type 4 systems, maximum pair current is obtained at Rchan-2P=12.5 $\Omega$  (at 100m channel length) where E2EP2PRunb is the lowest.

REFERENCES: http://www.ieee802.org/3/bt/public/oct15/darshan\_01\_1015.pdf

# Annex D: 4-pair models and its database

For more details see pair-to-pair unbalance adhoc material.



| #  | component                                                 | Value     |
|----|-----------------------------------------------------------|-----------|
| 1  | Vpse                                                      | 50.3      |
| 2  | PSE_Vdiff                                                 | 10mV      |
| 3  | Pd_Vdiff                                                  | 60mV      |
| 4  | Cable P2PRunb                                             | 5%        |
| 5  | Pair unb                                                  | 2%        |
| 6  | Ppd                                                       | 51W       |
| 7  | Cable length (Lcable)                                     | 2.65m     |
| 8  | Cordage Resistivity (per wire)                            | 0.0926Ω/m |
| 9  | Cable resistivity (per wire)                              | 0.076Ω/m  |
| 10 | Resistivity=0.1*Cordage_resistivity+0.9*Cable_Resistivity |           |
| 11 | Rcable_max=Lcable*Resistivity                             |           |

| #  | component | Value [Ω] |       |  |
|----|-----------|-----------|-------|--|
|    |           | max       | min   |  |
| 12 | Rt        | 0.13      | 0.12  |  |
| 13 | Rsense    | 0.25      | 0.245 |  |
| 14 | Rdson     | 0.1       | 0.07  |  |
| 15 | Rcon      | 0.05      | 0.03  |  |

### Channel model for all 4 pairs:



Updated to Equation 33-15. Yair Darshan, November 2016.