#### Comment i-262

- 1. Make the following changes.
- 2. In addition, Remove TEST\_MODE, TEST\_MODE\_PRI and TEST\_MODE\_SEC components/variable from clause 145.

# **30.9.1.1.4 aPSEPowerDetectionStatus** ATTRIBUTE

APPROPRIATE SYNTAX:

| An ENUMERATED VALUE that has one of the following entries: |                                            |  |
|------------------------------------------------------------|--------------------------------------------|--|
| disabled                                                   | PSE disabled                               |  |
| searching                                                  | PSE searching                              |  |
| deliveringPower                                            | PSE delivering power                       |  |
| test                                                       | PSE test mode                              |  |
| fault                                                      | _PSE fault detected                        |  |
| otherFault                                                 | PSE implementation specific fault detected |  |

#### BEHAVIOUR DEFINED AS:

A read-only value that indicates the current status of the PD Detection function specified in 33.2.5 and 145.2.6.

The enumeration "disabled" indicates that the PSE State diagram (Figure 33–9) is in the state DISABLED. The enumeration "deliveringPower" indicates that the PSE State diagram is in the state POWER\_ON. The enumeration "test" indicates that the PSE State diagram is in the state TEST\_MODE. The enumeration "fault" indicates that the PSE State diagram is in the state TEST\_ERROR. The enumeration "otherFault" indicates that the PSE State diagram is in the state IDLE due to the variable error\_condition = true. The enumeration "searching" indicates the PSE State diagram is in a state other than those listed above. If a Clause 22 MII or Clause 35 GMII is present, then this will map to the PSE Status bits specified in 33.5.1.2.11.

NOTE—A derivative attribute may wish to apply a delay to the use of the "deliveringPower"\_enumeration as the PSE state diagram will enter then quickly exit the POWER\_ON state if a short-circuit or overcurrent condition is present when power is first applied.

#### 30.9.1.1.4 aPSEPowerDetectionStatusS

ATTRIBUTE APPROPRIATE SYNTAX:

| JPRIATE STINTAA:                                           |                                            |  |
|------------------------------------------------------------|--------------------------------------------|--|
| An ENUMERATED VALUE that has one of the following entries: |                                            |  |
| disabled                                                   | PSE disabled                               |  |
| searching                                                  | PSE searching                              |  |
| deliveringPower                                            | PSE delivering power                       |  |
| test                                                       | PSE test mode                              |  |
| fault                                                      | PSE fault detected                         |  |
| otherFault                                                 | PSE implementation specific fault detected |  |

#### **BEHAVIOUR DEFINED AS:**

A read-only value that indicates the current status of the PD Detection function specified in 33.2.5 and 145.2.6.



Clause 30. September 2017. <u>Rev003</u> Yair Darshan Page 1 of 7

The enumeration "disabled" indicates that the PSE State diagram (Figure 33–9) is in the state DISABLED. The enumeration "deliveringPower" indicates that the PSE State diagram is in the state POWER\_ON. The enumeration "test" indicates that the PSE State diagram is in the state TEST\_MODE. The enumeration "fault" indicates that the PSE State diagram is in the state TEST\_ERROR. The enumeration "otherFault" indicates that the PSE State diagram is in the state IDLE due to the variable error\_condition = true. The enumeration "searching" indicates the PSE State diagram is in a state other than those listed above. If a Clause 22 MII or Clause 35 GMII is present, then this will map to the PSE Status bits specified in 33.5.1.2.11.

<u>NOTE</u>—A derivative attribute may wish to apply a delay to the use of the "deliveringPower" -enumeration as the PSE state diagram will enter then quickly exit the POWER\_ON state if a short-circuit or overcurrent condition is present when power is first applied.

#### 30.9.1.1.4a aPSEPowerDetectionStatusA

Not part of the baseline TEST MODE was deleted in from Type 3 and 4 state machine and variable definitions

### <u>ATTRIBUTE</u>

APPROPRIATE SYNTAX:

| searchingAltA       | PSE searching                              |
|---------------------|--------------------------------------------|
| deliveringPowerAltA | PSE delivering power                       |
| testAltA            | PSE test mode                              |
| faultAltA           | PSE fault detected                         |
| otherFaultAltA      | PSE implementation specific fault detected |

#### **BEHAVIOUR DEFINED AS:**

A read-only value that indicates the current status of the PD Detection function specified in 145.2.6.

The enumeration "deliveringPowerAltA" indicates that the PSE State diagram is in the state POWER\_ON\_PRI. The enumeration "testAltA" indicates that the PSE State diagram is in the state TEST\_MODE\_PRI. The enumeration "faultAltA" indicates that the PSE State diagram is in the state TEST\_ERROR\_PRI. The enumeration "otherFaultAltA indicates that the PSE State diagram is in the state IDLE\_PRI due to the variable error\_condition\_pri = true. The enumeration "searchingAltA" indicates the PSE State diagram is in a state other than those listed above.

<u>NOTE</u>—A derivative attribute may wish to apply a delay to the use of the "deliveringPowerAltA" enumerations as the PSE state diagram will enter then quickly exit the POWER\_ON\_PRI state if a short-circuit or overcurrent condition is present when power is first applied;

# 30.9.1.1.4b aPSEPowerDetectionStatusB

 ATTRIBUTE

 APPROPRIATE SYNTAX:

 searchingAltB
 PSE searching

 deliveringPowerAltB
 PSE delivering power

 testAltB
 PSE test mode

 faultAltB
 PSE fault detected



Clause 30. September 2017. <u>Rev003</u> Yair Darshan Page 2 of 7

### otherFaultAltB PSE implementation specific fault detected

#### **BEHAVIOUR DEFINED AS:**

A read-only value that indicates the current status of the PD Detection function specified in 145.2.6.

The enumeration "deliveringPowerAltB" indicates that the PSE State diagram is in the state POWER\_ON\_SEC. The enumeration "testAltB indicate that the PSE State diagram is in the state TEST\_MODE\_SEC. The enumeration faultAltB" that the PSE State diagram is in the state TEST\_ERROR\_SEC. The enumeration "otherFaultAltB" indicates that the PSE State diagram is in the state IDLE\_SEC due to the variable error\_condition\_sec = true. The enumeration "searchingAltB" indicates the PSE State diagram is in a state other than those listed above.

<u>NOTE</u>—A derivative attribute may wish to apply a delay to the use of the "deliveringPowerAltB" enumerations as the PSE state diagram will enter then quickly exit the POWER\_ON\_SEC state if a short-circuit or overcurrent condition is present when power is first applied;



#### 30.9.1.1.6 aPSEInvalidSignatureCounter

ATTRIBUTE

APPROPRIATE SYNTAX: Generalized nonresettable counter.

This counter has a maximum increment rate of 2 counts per second.

#### BEHAVIOUR DEFINED AS:

This counter is incremented when the Type 1 and Type 2 PSE state diagram (Figure 33-9) enters the state SIGNATURE\_INVALID. This counter is not defined for Type 3 and Type 4 PSEs. If a Clause 22 MII or Clause 35 GMII is present, then this will map to the Invalid Signature bit specified in 33.5.1.2.6.;

30.9.1.1.6a aPSEInvalidSignatureCounterS

**ATTRIBUTE** 

APPROPRIATE SYNTAX: Generalized nonresettable counter. This counter has a maximum increment rate of 2 counts per second.

**BEHAVIOUR DEFINED AS:** 

This counter is incremented when the Type 3 and Type 4 PSE state diagram (Figure 145-13) enters the state IDLE due to sig\_pri  $\neq$  valid or sig\_sec  $\neq$  valid

#### 30.9.1.1.6b aPSEInvalidSignatureCounterA

**ATTRIBUTE** 

APPROPRIATE SYNTAX: Generalized nonresettable counter. This counter has a maximum increment rate of 2 counts per second.

#### **BEHAVIOUR DEFINED AS:**

This counter is incremented when the Type 3 and Type 4 PSE state diagram (Figure 145-15) enters the state IDLE\_PRI due to sig\_pri  $\neq$  valid.

# 30.9.1.1.6c aPSEInvalidSignatureCounterB

**ATTRIBUTE** 

APPROPRIATE SYNTAX: Generalized nonresettable counter. This counter has a maximum increment rate of 2 counts per second.

#### **BEHAVIOUR DEFINED AS:**

This counter is incremented when the Type 3 and Type 4 PSE state diagram (Figure 145-16) enters the state IDLE\_SEC due to sig\_sec  $\neq$  valid.



#### Comment i-263 (30.9.1.1.7 P 37 L 25)

The PSEPowerDeniedCounter is only specified for Type 1 and Type 2 state machine references. It is not clear if this was intention or if references to Type 3 and Type 4 should be added.

Currently:

This counter is incremented when the PSE state diagram (Figure 33-9) enters the state POWER\_DENIED.

#### **Proposed Remedy**

Make the following changes:

30.9.1.1.7 aPSEPowerDeniedCounter

ATTRIBUTE APPROPRIATE SYNTAX:

Generalized nonresettable counter. This counter has a maximum increment rate of 2 counts per second. BEHAVIOUR

DEFINED AS:

This counter is incremented when the PSE state diagram (Figure 33–9) enters the state POWER\_DENIED. If a Clause 22 MII or Clause 35 GMII is present, then this will map to the Power Denied bit specified in 33.5.1.2.4.;

# 30.9.1.1.7a aPSEPowerDeniedCounterS

<u>ATTRIBUTE</u>

APPROPRIATE SYNTAX:

<u>Generalized nonresettable counter</u>. This counter has a maximum increment rate of 2 counts per second. BEHAVIOUR DEFINED AS:

This counter is incremented when the PSE state diagram (Figure 145–13) enters the state POWER DENIED.

30.9.1.1.7b aPSEPowerDeniedCounterA

ATTRIBUTE

APPROPRIATE SYNTAX:

<u>Generalized nonresettable counter. This counter has a maximum increment rate of 2 counts per</u> second. BEHAVIOUR DEFINED AS:

This counter is incremented when the PSE state diagram (Figure 145–15) enters the state POWER\_DENIED\_PRI.

30.9.1.1.7c aPSEPowerDeniedCounterB ATTRIBUTE

APPROPRIATE SYNTAX:

<u>Generalized nonresettable counter. This counter has a maximum increment rate of 2 counts per</u> <u>second. BEHAVIOUR DEFINED AS:</u>

This counter is incremented when the PSE state diagram (Figure 145–16) enters the state POWER\_DENIED\_SEC.



# Comment i-264 (**30.9.1.1.8** P37, L41) Comment i-33 (**30.9.1.1.8** P37, L33)

#### **Proposed Remedy:**

Make the following changes:

#### 30.9.1.1.8 aPSEOverLoadCounter

#### ATTRIBUTE

APPROPRIATE SYNTAX:

Generalized nonresettable counter. This counter has a maximum increment rate of 2 counts per second.

#### **BEHAVIOUR DEFINED AS:**

This counter is incremented when the PSE state diagram (Figure 33–9) enters the state ERROR\_DELAY\_OVER. If a Clause 22 MII or Clause 35 GMII is present, then this will map to the Overload bit specified in 33.5.1.2.8.;

#### 30.9.1.1.8a aPSEOverLoadCounterS

#### **ATTRIBUTE**

APPROPRIATE SYNTAX:

Generalized nonresettable counter. This counter has a maximum increment rate of 2

counts per second.

#### **BEHAVIOUR DEFINED AS:**

This counter is incremented when the PSE state diagram (Figure 145–13) enters the state ERROR\_DELAY

#### 30.9.1.1.8b aPSEOverLoadCounterA

#### <u>ATTRIBUTE</u>

APPROPRIATE SYNTAX:

Generalized nonresettable counter. This counter has a maximum increment rate of 2 counts per second.

**BEHAVIOUR DEFINED AS:** 

This counter is incremented when the PSE state diagram (Figure 145–15) enters the state ERROR\_DELAY\_PRI.

#### 30.9.1.1.8c aPSEOverLoadCounterB

<u>ATTRIBUTE</u>

APPROPRIATE SYNTAX:

Generalized nonresettable counter. This counter has a maximum increment rate of 2 counts per second.

BEHAVIOUR DEFINED AS:

This counter is incremented when the PSE state diagram (Figure 145–15) enters the state ERROR\_DELAY\_SEC.



# Comment i-265 (30.9.1.1.11 P 38 L 2) Proposed Remedy: Make the following changes:

### 30.9.1.1.11 aPSEMPSAbsentCounter

#### ATTRIBUTE

APPROPRIATE SYNTAX:

Generalized nonresettable counter. This counter has a maximum increment rate of 2 counts per second.

**BEHAVIOUR DEFINED AS:** 

This counter is incremented when the PSE state diagram (Figure 33–9) transitions directly from the state POWER\_ON to the state IDLE due to tmpdo\_timer\_done being asserted. If a Clause 22 MII or Clause 35 GMII is present, then this will map to the MPS Absent bit specified in 33.5.1.2.9.;

#### 30.9.1.1.11a aPSEMPSAbsentCounterS

#### ATTRIBUTE

APPROPRIATE SYNTAX:

<u>Generalized nonresettable counter. This counter has a maximum increment rate of 2 counts per second.</u>

BEHAVIOUR DEFINED AS:

This counter is incremented when the PSE state diagram (Figure 145–13) transitions directly from the state POWER\_ON to the state IDLE due to tmpdo\_timer\_done being asserted.

#### 30.9.1.1.11b aPSEMPSAbsentCounterA

<u>ATTRIBUTE</u>

APPROPRIATE SYNTAX:

<u>Generalized nonresettable counter. This counter has a maximum increment rate of 2 counts per</u> <u>second.</u>

**BEHAVIOUR DEFINED AS:** 

This counter is incremented when the PSE state diagram (Figure 145–15) transitions directly from the state POWER\_ON\_PRI to the state IDLE\_PRI due to tmpdo\_timer\_pri\_done being asserted.

# 30.9.1.1.11c aPSEMPSAbsentCounterB

# <u>ATTRIBUTE</u>

APPROPRIATE SYNTAX:

<u>Generalized nonresettable counter. This counter has a maximum increment rate of 2 counts per</u> <u>second.</u>

**BEHAVIOUR DEFINED AS:** 

This counter is incremented when the PSE state diagram (Figure 145–16) transitions directly from the state POWER\_ON\_SEC to the state IDLE\_SEC due to tmpdo\_timer\_sec\_done being asserted.

