1 Comment (Clause 145.2.7, #45, Page 151, L15)

2 Table 145-11 and the following text in page 150 lines 9-11:

3 "PSE implementations may use VPSE = VPort_PSE-2P min and RChan = RCh when powering using a

4 single pairset, or RChan = RCh/2 when powering using two pairsets to arrive at over-margined values as

5 <u>shown in Table 145–11</u>"

6

8

9 10

11 12 13

14

15 16

18 19 20

21 22

23 24 25

31

32 33

34

7 There are few problems:

- a) If we plug the worst-case values of Vpse and Rch in Equations 145-2 and 145-3, we will not get the over margined fixed values in Table 145-11. There are significant unexplained differences in the specification.
- b) Class 1-3 value differences could be justified when Type 1 and Type PSEs was part of the 802.3bt spec. Now they are in separate clause 33.
- c) The value RCh=20 Ω for Type 1 is not realistic and should not imposed on Type 3 and 4 PSE systems and even if we impose it, the Pclass values will be lower than Table 145-11.
- d) Table 145-11 numbers for Pclass define for class 1-6 with Type 4 PSEs are much lower due to lower
 Rch and/or higher Vpse_min.
 - e) The PSE can set the true minimum PClass and PClass-2P by using Equation 145-2 and 145-3 as the intent of this spec but currently this objective is not met.
 - f) In addition, Vpd per the assigned class need to be verified per the above arguments.

26 The solution for the problems above consist of 3 elements:

- To disconnect between Table 145-11 and how we get the over-margined value, for example:
 "PSE implementations may use VPSE = VPort_PSE-2P min and RChan = RCh when powering using a single pairset, or RChan = RCh/2 when powering using two pairsets to arrive at over-margined values.-as
 shown in Table 145-11"
 - 2. Clarify that the values in Table 145-11 are based on the lower PSE type used per the assigned class which will generate the maximum Pclass or Pclass-2P.
- To update Table 145-11 numbers per the overmargined values obtained from Equation 145-2 AND
 145-3 when the worst case relevant Type parameters are used. See Annex A for details.
- 38

37

1 Discussion:

2 In some rows in the table below, the actual calculated worst case values per Equations

4

145-2 and 145-3 are significantly lower that the values in Table 145-11.

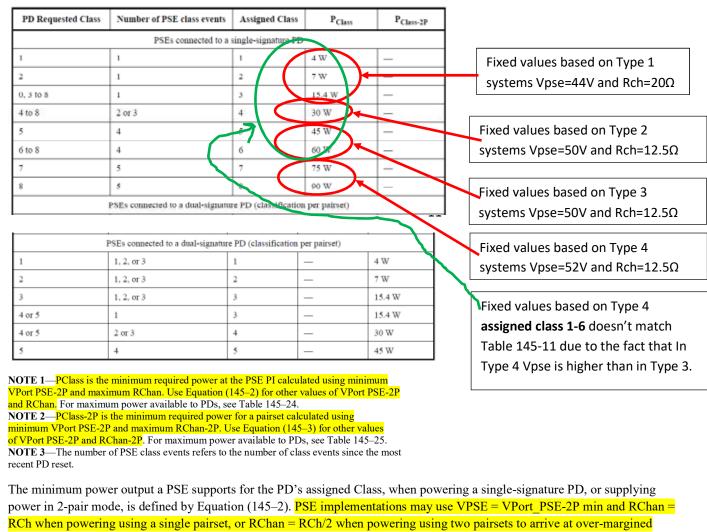


Table 145–11—Physical Layer power classifications

RCh when powering using a single pairset, or RChan = RCh/2 when powering using two pairsets to arrive at over values as shown in Table 145–11. PClass may subsequently be adjusted using Data Link Layer classification.

$$P_{\text{Class}} = \left\{ V_{\text{PSE}} \times \left(\frac{V_{\text{PSE}} - \sqrt{V_{\text{PSE}}^2 - 4 \times R_{\text{Chan}} \times P_{\text{Class_PD}}}}{2 \times R_{\text{Chan}}} \right) \right\}_{\text{W}}$$

(145-2)

The minimum output power a PSE supports on a pairset for PSEs connected to a dual-signature PD is defined by Equation (145–
 3). PSE implementations may use VPSE = VPort_PSE-2P min and RChan = RCh to arrive at over-margined values as shown in

31 Table 145–11. PClass-2P may subsequently be adjusted using Data Link Layer classification.

$$P_{\text{Class-2P}} = \left\{ V_{\text{PSE}} \times \left(\frac{V_{\text{PSE}} - \sqrt{V_{\text{PSE}}^2 - 4 \times |R_{\text{Chan}} \times P_{\text{Class}} \text{PD-2P}}}{2 \times R_{\text{Chan}}} \right) \right\}_{\text{W}}$$
(145-3)

PClass fixed values vs. calculated values. Yair Darshan, May 2017 Rev003 Page 2 of 10

 $\begin{array}{c} 13\\ 14\\ 15\\ 16\\ 17\\ 19\\ 20\\ 22\\ 23\\ 23\\ \end{array}$

24

25

28

32

1 The differences between calculations per Equations 145-2 and 145-3 and Table 145-11.

7
/

		This column information is no longer part of clause 145				
Requested Class	Spec. Table 145-11	Type 1/2 over 2-pairs	Type 3 Over 2-pairs	Type 4 Over 2-pairs	Type 3 Over 4-pairs	Type 4 Over 4-pairs
1	4W	4.006	3.92	3.91	3.88	3.88
2	7W	6.996	6.716	6.7	6.6	6.59
3	15.4W	15.4	14	13.89	13.45	13.42
4	30W	30	30	29.53	27.37	27.21
5	45W			45.02	45.08	44.6
6	60W				60	59.06
7	75W					75
8	90W					90.04
Max Diff[W]		0.006	1.4	1.51	2.63	2.79

Values that are >|0.1W| from the spec are marked with RED color.

Notes:

Type 1,2 class 1-4 calculations per Equation 145-3 meets Table 145-11. They were calculated with Vpse=44V and Rch=20 Ω.

Type 3 class 1-3 calculated values per Equation 145-3 are lower than Table 145-11 values. They were calculated with Vpse=50V and Rch=12.5 Ω.

Type 4 class 1-4 calculated values per Equation 145-3 are different than Table 145-11 values. They were calculated with Vpse=52V and Rch=12.5 Ω.

Type 3 class 1-4 calculated values per Equation 145-2 are different than Table 145-11 values. They were calculated with
 Vpse=50V and Rchan=6.25 Ω.

Type 4 class 1-5 calculated values per Equation 145-2 are different than Table 145-11 values. They were calculated with
 Vpse=52V with and Rchan=6.25 Ω.

BASELINE STARTS HERE

1 Suggested Remedy

2 There are 3 options. Options B and C are shown in the annexes for reference.

3 Option A (Based on the calculations in Annex A)

1. Modify Pclass and Pclass -2P in Table 145-11 per the following:

Pclass	Pclass-2P				
	1 01035 21				
4 3.92	-				
7 6.72	-				
15.4 14	-				
30	-				
4 5 45.1	-				
60	-				
75					
90	-				
-	<mark>4</mark> 3.92				
-	7 6.72				
-	15.4 14				
-	15.4 14				
-	30				
-	45				

6 7

13

2. Modify the following text:

8 The minimum power output a PSE supports for the PD's assigned Class, when powering a single-signature PD, or
9 supplying power in 2-pair mode, is defined by Equation (145–2). PSE implementations may use VPSE = VPort_PSE10 2P min when powering using a single pairset, or RChan = RCh/2 when powering using two pairsets to arrive at over11 margined values_ as shown in Table 145–11 shows over-margined values for worst case PSE Type parameters. PClass
12 may subsequently be adjusted using Data Link Layer classification.

$$F_{\text{Class}} = \left[F_{\text{ISE}} * \left[\frac{F_{\text{ISE}} - \sqrt{F_{\text{ISE}}^2 - 4 + R_{\text{Class}} + P_{\text{Class}, RD}}}{2 \times R_{\text{Class}}} \right]_{W} \qquad (145-2)$$

The minimum output power a PSE supports on a pairset for PSEs connected to a dual-signature PD is defined by
Equation (145–3). PSE implementations may use VPSE = VPort_PSE-2P min and RChan = RCh to arrive at overmargined values<u>as shown in</u> Table 145–11 <u>shows over-margined values for worst case PSE Type parameters</u>.
PClass-2P may subsequently be adjusted using Data Link Layer classification.

$$P_{\text{Chan,DP}} = \left\{ P_{\text{PSE}} * \left(\frac{P_{\text{PSE}} - 4 * |R_{\text{Chan}} * P_{\text{Chan}} |P_{\text{DSE}}|}{2 * R_{\text{Chan}}} \right) \right\}_{W} \qquad (145-)$$

19

18

PClass fixed values vs. calculated values. Yair Darshan, May 2017 Rev003 Page 4 of 10

3. Modify Table 145-28 for Vport_PD-2P as follows (See Annex C for details):

	From	То
Class 1	42.1	48
Class 2	40.8	47
Class 0,3	37	44
Class 4	42.5	42.5
Class 5, single-signature PD	44.3	44.3
Class 5, dual-signature PD	41.2	41.2
Class 6	42.5	42.5
Class 7	42.9	42.9
Class 8	41.2	41.2

End OF Baseline

1 Annex A: Option A calculations for D2.5

2

3 Notes:

- 4 1. Type 1 and Type 2 PSEs are not part of clause 145.
- Type 1 and Type 1 PDs need to be supported by Type 3 and Type 4 PSEs according to Table 145-1 RCh=12.5Ω
 and not RCh=20Ω. Therefore, the case of RCh=20Ω is not part of the calculations to derive the spec for
 clause 145.
- The numbers for option A were rounded to the next 2 decimal point accuracy. In addition, the numbers for option A for class 1-4 were calculated to be the maximum of 2-pairs and 4-pairs values regardless if it is
 Type 3 or Type 4 (since there is only one value column for both PSE types and PSE may work on 2-pairs or 4-pairs).

				•	(Rounded numbers to 2 decimal point, to be used for Option 2)			Option A			
	Not part of clause 145 spec			Р	Part of clause 145 SPEC			Part of clause 145 SPEC			
Vpse	44	50	52	50	52	50	52		Pclass [W]	Pclass-2P[W]	
Rch	20	20	20	12.5	12.5	6.25	6.25				
	Type 1,2	Type 3	Type 4	Type 3	Type 4	Type 3	Type 4				
	Pclas	ss 2-pais[V	V]	Pclass 2	-pais[W]	Pclass 4	-pais[W]				
Class 1	4.006	3.966	3.956	3.917	3.911	3.878	3.875	3.92 max(2-pairs, 4-pairs)		3.92	max(2-pairs)
Class 2	6.996	6.867	6.836	6.715	6.697	6.599	6.590	6.72	max(2-pairs, 4-pairs)	6.72	max(2-pairs)
Class 3	15.400	14.672	14.506	13.977	13.892	13.452	13.416	13.98	max(2-pairs, 4-pairs)	13.98	max(2-pairs)
Class 4	30.000	30.000	29.532	30.000	29.532	27.373	27.212	30	max(2-pairs, 4-pairs)	30.00	max(2-pairs)
Class 5	-	-		-	45.019	45.081	44.597	45.08 max(4-pairs)		45.02	max(2-pairs)
Class 6	-	-		-	-	60	59.063	60 max(4-pairs)			-
Class 7	-	-		-	-	-	75.002	75 max(4-pairs)			-
Class 8	-	-		-	-	-	90.038	90.04	max(4-pairs)		-

12

1 Annex B: Option B calculations for D2.5

2

4

8

- 3 Notes:
 - 1. Type 1 and Type 2 PSEs are not part of clause 145.
- Type 1 and Type 1 PDs need to be supported by Type 3 and Type 4 PSEs according to Table 145-1 RCh=12.5Ω
 and not RCh=20Ω. Therefore, the case of RCh=20Ω is not part of the calculations to derive the spec for
 clause 145.
 - 3. The numbers for option B were rounded to the next 2 decimal point accuracy.
- 9 4. The numbers for option B for class 1-4 were calculated per each Type separately and the maximum of 2pairs and 4-pairs values for each Type was taken. This is different than Option A where we had one column
 for the values. As we can see, option B is more accurate and there are significant differences between D2.4
 spec and Option B.
- 13

	Not part of	clause 145	spec	Part of clause 145 SPEC				Option B spec			
Vpse	44	50	52	50	50	52	52	Pclass		Pclass-2P	
Rch	20	20	20	12.5	6.25	12.5	6.25				
	Type 1,2	Type 3	Type 4	Type 3	Type 3	Type 4	Type 4	Type 3	Type 4		
	Pc	lass 2-pais	;	Pclass-2P	Pclass	Pclass-2P	Pclass	Pclass		Pclass-2P	
Class 1	4.006	3.966	3.956	3.917	3.878	3.911	3.875	3.92	3.92	3.92	3.92
Class 2	6.996	6.867	6.836	6.715	6.599	6.697	6.590	6.72	6.72	6.72	6.7
Class 3	15.400	14.672	14.506	13.977	13.452	13.892	13.416	13.98	13.98	13.98	13.9
Class 4	30.000	30.000	29.532	30.000	27.373	29.532	27.212	30.00	30.00	30.00	29.53
Class 5	-	-		-	45.081	45.019	44.597	45.08	44.597	-	45.02
Class 6	-	-		-	60.000	-	59.063	60.00	59.063	-	-
Class 7	-	-		-	-	-	75.002	-	75.002	-	-
Class 8	-	-		-	-	-	90.038	-	90.038	-	-

14

1 Option B (Based on the calculations in Annex B)

- 1. Modify Pclass and Pclass -2P in Table 145-11 as follows:
- 2 3

Pcl	ass	Pclas	ss-2P
Туре 3	Type 4	Туре 3	Type 4
4 -3.92	4 -3.92	-	-
7 -6.72	7 -6.72	-	-
15.4 -14	15.4 -14	-	-
30	30	-	-
45 -45.1	45 44.6	-	-
60	60 -59.1	-	-
	75	-	-
	90	-	-
-	-	4 3.92	4 3.92
-	-	76.72	7 6.7
-	- <u>-</u> 15.4 14		15.4 13.9
-	-	15.4 14	15.4 13.9
-	-	30	30 29.53
-	-	-	45

4 5

2. Modify the following text:

The minimum power output a PSE supports for the PD's assigned Class, when powering a single-signature
PD, or supplying power in 2-pair mode, is defined by Equation (145–2). PSE implementations may use
VPSE = VPort_PSE-2P min when powering using a single pairset, or RChan = RCh/2 when powering using
two pairsets to arrive at over-margined values. as shown in Table 145–11 shows over-margined values for
worst case PSE Type parameters. PClass may subsequently be adjusted using Data Link Layer
classification.

12
$$F_{Class} = \left[F_{PS2} * \left[\frac{F_{PS2} - \sqrt{F_{PS2}^2 - 4 + R_{Class} + P_{Class} - R_2}}{2 \times R_{Class}} \right] \right]_{W} \qquad (145-2)$$

The minimum output power a PSE supports on a pairset for PSEs connected to a dual-signature PD is
defined by Equation (145–3). PSE implementations may use VPSE = VPort_PSE-2P min and RChan = RCh
to arrive at over-margined values. as shown in Table 145–11 shows over-margined values for worst case
PSE Type parameters. PClass-2P may subsequently be adjusted using Data Link Layer classification.

$$P_{\text{Class.3P}} = \left\{ P_{\text{PSE}} * \left(\frac{P_{\text{PSE}} - \sqrt{P_{\text{PSE}}^2 - 4 * |R_{\text{Class}} * P_{\text{Class.PD.3P}}}}{2 * R_{\text{Class}}} \right) \right\}_{\text{W}}$$
(145-3)

1 Option C (significant differences between the actual worst case numbers and Table 145-11 values)

3 *Modify the following text:*

The minimum power output a PSE supports for the PD's assigned Class, when powering a single-signature
PD, or supplying power in 2-pair mode, is defined by Equation (145–2). PSE implementations may use
VPSE = VPort_PSE-2P min when powering using a single pairset, or RChan = RCh/2 when powering using
two pairsets to arrive at over-margined values. as shown in Table 145–11 shows over-margined values for
worst case PSE Type parameters. PClass may subsequently be adjusted using Data Link Layer
classification.

$$F_{Class} = \left[F_{PS2} + \left[\frac{F_{PS2} - \int P_{PS2}^2 - 4 + R_{Class} + P_{Class} + P_{Class}}{2 \times R_{Class}} \right] \right]_{W} \qquad (145-2)$$

11 The minimum output power a PSE supports on a pairset for PSEs connected to a dual-signature PD is

- defined by Equation (145–3). PSE implementations may use VPSE = VPort_PSE-2P min and RChan = RCh
- 13 to arrive at over-margined values. as shown in Table 145–11 shows over-margined values for worst case
- 14 <u>PSE Type parameters</u>. PClass-2P may subsequently be adjusted using Data Link Layer classification.

$$P_{\text{Class-2P}} = \left\{ V_{\text{PSE}} \times \left(\frac{V_{\text{PSE}} - 4 \times |R_{\text{Class}} \times P_{\text{Class}, \text{PD-2P}}}{2 \times R_{\text{Class}}} \right) \right\}_{\text{W}}$$
(145-3)

16

10

1 Annex C – PD input voltage calculations

2

	Type 1,2	Type 3	Type 4	Туре 3	Type 4	Type 3	Type 4
	2P	2P	2P	2P	2P	4P	4P
	20 for class 1-3 12.5 for						
Rch	class 4	20	20	12.5	12.5	12.5	12.5
Class 1	42.18	48.41	50.48	49.02	51.06	49.52	51.53
Class 2	40.82	47.25	49.37	48.32	50.39	49.18	51.21
Class 3	37.00	44.13	46.42	46.51	48.66	48.32	50.39
Class 4	42.50	42.50	44.90	42.50	44.90	46.58	48.73
Class 5					41.18	44.36	46.64
Class 6						42.50	44.90
Class 7							42.99
Class 8							41.18

