

System Unbalance Examples

Michael Paul, David Stover, and Heath Stewart

Issue

- System Unbalance calculated using the values and methods from Draft 2.1 is not in conformance with Icon-2p-unb from Table 33-19
- This presentation simply shows that the system is inoperable as defined
- The group needs to reach consensus on the path forward

Class 5 Low Channel Resistance Example

Let: Rpse_min = 0.1Ω Vsupply = 50.12V Rpse_max = 2.200 * 0.1 - 0.04 = 0.18Ω
Ra = Rpse_min + Rload_min = 0.823Ω
Rb = Rpse_max + Rload_max = 1.808Ω
Re2e = Ra || Rb = 0.565Ω
Icon = 813mA
Ia / Ib = Rb / Ra = 2.197
Ia = 558.6m <- Violates Icon-2p-unb
Ib = 254.3m</pre>

$2.200 \times R_{\text{PSE min}} - 0.040$	for Class 5
$2.010 \times R_{\text{pSE},\min} - 0.040$	for Class 6
$1.800 \times R_{\rm pSE min} - 0.030$	for Class 7
$1.750 \times R_{\text{DSE min}} - 0.030$	for Class 8
	$2.200 \times R_{PSE_{min}} = 0.040$ $2.010 \times R_{PSE_{min}} = 0.040$ $1.800 \times R_{PSE_{min}} = 0.030$ $1.750 \times R_{PSE_{min}} = 0.030$

Table 33B-1-R_{load max} and R_{load min} requirements

PSE Class	$R_{load_min}\left(\Omega\right)$	$\mathbf{R}_{\mathbf{load_max}}\left(\Omega\right)$	Additional information
5	0.723	1.628	R _{load} is at low channel resistance conditions
6	0.623	1.289	
7	0.590	1.090	
8	0.544	0.975	
5	5.920	7.190	R _{load} is at high channel resistance conditions
6	5.780	7.000	
7	5.710	6.870	
8	5.650	6.790	

Measurement methods to determine R_{PSE_max} and R_{PSE_min} and I_{Con-2P-unb} are defined in 33B.2, 33B.3, and 33B.4.

Class 5 Low Channel Resistance Icon Calculation

```
Let:
Re2e = 0.565Ω
Vsupply = 50.12V
Rthev = 2 * Re2e (factor of 2 for source and return paths)
Ppd = 40W
Vpd = [Vsupply - sqrt(Vpse<sup>2</sup> - 4 * Ppd * Rthev)] / 2
Vpd = 49.2V
Icon = (Vsupply - Vpd) / Rthev = 813mA
```


Class 6 Low Channel Resistance Example

Let: Rpse_min = 0.1Ω Vsupply = 50.14V

	$2.200 \times R_{\text{pse min}} - 0.040$	for Class 5
Room -	$2.010 \times R_{\text{pse_min}} - 0.040$	for Class 6
**PSE_max	$1.800 \times R_{\text{pSE min}} - 0.030$	for Class 7
	$1.750 \times R_{\text{PSE min}} - 0.030$	for Class 8
l	$1.750 \times R_{PSE_{min}} = 0.050$	TOI Class 8

Table 33B-1-Rload max and Rload min requirements

PSE Class	$R_{load_min}\left(\Omega\right)$	$\mathbf{R}_{\mathbf{load_max}}\left(\Omega\right)$	Additional information
5	0.723	1.628	R _{load} is at low channel resistance conditions
6	0.623	1.289	
7	0.590	1.090	
8	0.544	0.975	
5	5.920	7.190	R _{load} is at high channel resistance conditions
6	5.780	7.000	
7	5.710	6.870	
8	5.650	6.790	

Measurement methods to determine R_{PSE_max} and R_{PSE_min} and I_{Con-2P-unb} are defined in 33B.2, 33B.3, and 33B.4.

Class 6 Low Channel Resistance Icon Calculation

```
Let:

Re2e = 0.482Ω

Vsupply = 50.14V

Rthev = 2 * Re2e (factor of 2 for source and return paths)

Ppd = 51W

Vpd = [Vsupply - sqrt(Vpse^2 - 4 * Ppd * Rthev)] / 2

Vpd = 49.13V

Icon = (Vsupply - Vpd) / Rthev = 1038mA
```


Conclusion

- System Unbalance calculated using the values and methods from Draft 2.1 is not in conformance with Icon-2p-unb from Table 33-19
- Possible Fixes
 - Reduce PDs unbalance allocation
 - Increase system unbalance allocation
 - Reduce Pclass_PD (~1W)
 - Raise Vpse

