802.3at: Select Issues

PD Power Draw Specification AC Ripple/Noise Specification LLDP Timing LLDP TLV's **Ambiguous Tpon Combined 2-Event & LLDP Combined AC MPS/DC MPS** Icut / Tcut Specification **DC Unbalance**

PD Power Draw Specification

Table 33-18: P_{class_PD} □ Maximum wattage by PD Class (e.g. 25.5 for class 4)

Figure 33-18: P_{class_PD} P_{peak_PD} P_{class_PD} P_{class_PD} P_{class_PD} P_{class_PD} F_{class_PD} F_{class_PD} P_{peak_PD} F_{class_PD} F_{class_PD}

Section 33.3.7.4

Iportmax = $(P_{class_PD} / V_{port_PD})$, P_{class_PD} is the maximum power P_{class_PD} max (33-18) ... $P_{peak_PD} = (1.11 \times P_{class_PD})$, P_{class_PD} is the input average power

Section 33.3.7.2

The maximum average power, **P**_{class_PD} in Table 33-18...is calculated over a 1 second interval. ... Average power is calculated using any sliding window with a width of 1 sec.

ISSUE: What if LLDP defines P_{class PD} max (power grant)?

P_{peak_PD} and P_{class_PD} in Figure 33-18 cannot be P_{class_PD} max, P_{peak_PD} max from Table 33-18

AC Ripple/Noise Specification

Table 33-11:

4 Frequency Bands

- < 500Hz (.5Vpp)
- 500Hz to 150KHz (.2Vpp)
- 150KHz -500KHz (.15Vpp)
- 500Hz-1MHz (.1Vpp)

Para 33.2.7.3

- Common mode or Pair-to-Pair
- 10mA P_{type} min power levels
- Preserve Data Integrity

ISSUE: What are practical test conditions ?

□ 802.3af included test circuit with 0.1µF load

- Note: Minimum (worst case) detection capacitance = 0.05μ F (table 33-14)
- **D** PD C_{port} min(powered state) = 5μ F
 - Note: This is at the PD interface, not the PSE interface
- Assuming typical high frequency source impedance, capacitive loading will make ALL THE DIFFERENCE in measurement outcomes, especially above 500Hz

LLDP Timing

When Does a PSE First Produce PoE LLDP Message to a PD?

Paragraph 33.6.2:

A Type 2 PSE shall send an LLDPDU containing a Power via MDI TLV <u>within 10 seconds</u> of Data Link Layer classification being enabled in this PSE as indicated by the variable **pse_dll_enabled** (33.2.4.4, 33.6.3.3)

Paragraph 33.2.4.4

pse_dll_enabled A variable indicating whether the Data Link Layer classification mechanism is enabled

PSE State Diagram 33.2.4.7

So what's the requirement?

- □ 10 seconds after inrush complete?
- **UCT:** If UCT is forever, what's the point of 10 seconds ?

LLDP TLV's

Clause 79.3.2 PoE LLDP Message

LLDP Headers	Power Via MDI	Power Via MDI Extended
	3 octets Para 79.3.2.13	5 octets Para 79.3.2.46

Clause 79.3.2.1 - .3 Power Via MDI

- □ MDI Power Support: Port Class (PSE / PD), PSE MDI Power Support, State, Pair Control
- **D** PSE Power Pair: IETF RFC 3621 designator
- Power Class: IETF RFC 3621 designator (1 to 5)

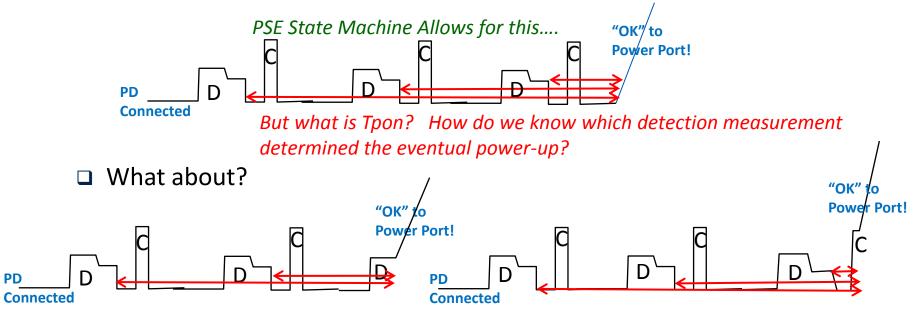
ISSUE: Relevance and Content of Power Via MDI TLV's

- Information extraneous to 802.3at LLDP power negotiation that only needs the "Extended" content
- □ Many LLDP PSE's don't appear to populate these correctly today

(e.g. PSE MDI Power Support = NONE)

11/11/2013

Sifos Technologies, 2013


Ambiguous Tpon

Tpon Objective:

Prevent powering non-PD's by minimizing the time from a successful detection until the power-up

Software Managed PSE State Machines

□ The "necessary evil" given complex PSE power management situations

Tpon (classic)

Combined 2-Event & LLDP

Para. 33.3.2.6 and Table 33-8

- □ Possible award candidate for "Hardest Table to Comprehend" !
- □ Table 33-8 allows for combination of LLDP and 2-Event power grants
- Text allows: ...2-Event Physical Layer classification and Data Link Layer classification....

Issue:

Those who think "MORE IS BETTER" implement BOTH 2-Event and LLDP Classification (power-grants).

□ In a PSE that must allocate a limited power budget, it is *generally illogical* to precede LLDP negotiation with a 2-Event grant for the full 25.5 watts.

Recommendation:

We cannot reverse this, but we could add some text pointing out that this is not a recommended configuration in systems that must allocated limited power resources.

Combined AC MPS / DC MPS

Para. 33.2.9.1

□ The PSE shall monitor either the DC MPS component, the AC MPS component, or both.

Issue:

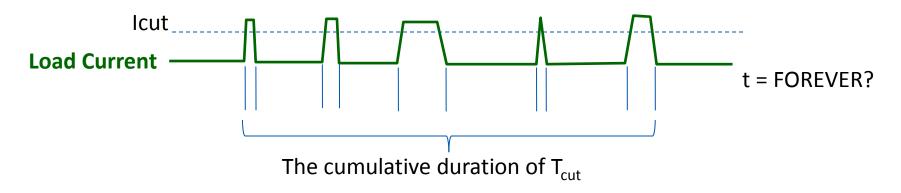
Those who think "MORE IS BETTER" implement BOTH AC MPS and DC MPS.

In practice, DC MPS will always prevail as a 5 mA (or even a 1 mA) DC load will look like lower impedance than 25KΩ meaning AC MPS is really doing nothing.

Recommendation:

We cannot reverse this, but we could add some text pointing out that this is not a recommended configuration to have both methods.

Icut / Tcut Specification



Para. 33.2.7.6 Overload Current

- Concept of required overload processing removed from 802.3at
- If I_{port}, the current supplied by the PSE to the PI, exceeds I_{cut} for longer than T_{cut}, the PSE may remove power from the PI. The cumulative duration of T_{cut} is measured with a sliding window of <u>at least</u> 1 second width.

Table 33-1:
$$I_{cut} = P_{class} / V_{port_PSE}, T_{cut} = 50 \text{ to } 75 \text{ msec}$$

ISSUE: What is a Violation of Icut/Tcut?

DC Unbalance

Table 33-11 Current Unbalance

- □ Max 3% of I_{cable} (I_{cable} = 350mA for Type-1, 600mA for Type-2)
 - 10.5 mA for Type-1, 18 mA for Type-2 PSE
- Para 33.2.7.11
 - ... Type-2 Endpoint PSE's shall meet the requirements of 25.4.4a in the presence of $(I_{unb}/2)$ [These are droop specifications, $I_{unb}/2 = I_{bias}$]

ISSUE: What Really Is the Requirement?

- □ Is 3% of I_{cable} the PSE <u>CONTRIBUTION</u> to DC Unbalance ?
 - Most of Table 33-11 is describing PSE behaviors...
- □ Is 3% of I_{cable} the amount of DC Unbalance the PSE should <u>TOLERATE</u> and meet 25.4.4a ?
 - DC Unbalance can (and will) be introduced by link elements such as Cabling, Connectors, PD's...
 - DC Unbalance TOLERANCE assessment is really a PHY assessment