Backplane and Copper Cable PMD Objectives

Matt Brown Applied Micro

50 Gb/s Ethernet Study Group Next Generation 100 Gb/s and 200 Gb/s Ethernet Study Group January 2016

Agenda

- Propose objectives for backplane PHYs.
- Propose objectives for copper cable PHYs.
- Goal is to approve objectives at the January meeting with no TBD values, but with the possible intention of adding necessary details at the March meeting.
- The presentation is not intended to promote:
 - which data rates should have backplane or cable objectives
 - what particular length each objective should support

Parameters to consider in the objectives

- Medium
 - printed circuit board backplane
 - twinaxial copper cables
- Data rate
 - one-lane 50 Gb/s
 - two-lane 100 Gb/s
 - four-lane 200 Gb/s
- Reach
 - for backplane
 - reach in physical length, e.g., 1 m
 - reach in insertion loss, e.g., 32 dB at Nyquist
 - for twinaxial copper cable
 - reach in physical length, e.g., 3 m
 - leaving reach for task force to define is not an option

Consensus survey numbers

• Survey monkey results were published from Mark Nowell.

from: http://www.ieee802.org/3/50G/public/adhoc/archive/nowell_010616_50GE_NGOATH_adhoc.pdf

Consensus survey comments

 3m Twinax → 50Gb/s no-FEC option for low-latency applications. → We should be open to a slightly shorter reach to ensure practicality. → need confirmation of technical feasibility Backplane → The numbers 32 and 12.9 are wrong. Nyquist frequency for the likely encoding is approx. 13.3 GHz. The work done in OIF suggests that an insertion loss of 27-28 dB is the limit for reasonable PAM4 transceivers at this rate, far less than 32 dB. I intend to propose an objective for "PCB backplane consistent with a total insertion loss equivalent to 3m of Twinax cable". A Need technical feasibility data I think an insertion loss in the range of 28 to 30dB is more realistic. More detailed work on Channel loss J uncertain of the 32 dB limit. 	50 Gb/s
3m Twinax → need BMP data → We should be open to a slightly shorter reach to ensure practicality. → Only reach should be defined. Strongly recommend to consider high performance computing applications where latency is critical and Active cable may be needed. Backplane → Adoption of a backplane objective is fine. It is not clear what an appropriate insertion loss target should be. → With serial 100 Gb/s not technically feasible it does not make sense to define 2x50G Cu → technical feasibility and should mirror 50G objective. → uncertain of the 32 dB limit.	100 Gb/s
3m Twinax → I see no reason to define a 200G copper PMD at this point in time. The primary purpose for such PMDs would be to connect servers to TOR switches → We should be open to a slightly shorter reach to ensure practicality. → Only reach should be defined. Strongly recommend to consider high performance computing applications where latency is critical and Active cable may be needed. Backplane → The numbers 32 and 12.9 are wrong. Nyquist frequency for the likely encoding is approx. 13.3 GHz. The work done in OIF suggests that an insertion loss of 27-28 dB is the limit for reasonable PAM4 transceivers at this rate, far less than 32 dB. <snip> 1 intend to propose an objective for "PCB backplane consistent with a total insertion loss equivalent to 3m of Twinax cable". → Same reason as above. I see no need for a 200GE backplane interface at this point in time → I think an insertion loss More detailed work on Channel loss</snip>	200 Gb/s

→ uncertain of the 32 dB limit.

Observation: Common theme is concern for choice of backplane insertion loss number.

from: http://www.ieee802.org/3/50G/public/adhoc/archive/nowell_010616_50GE_NGOATH_adhoc.pdf

Length considerations for objectives

- For backplane opposing views on reach have been stated
 - -view #1: need 32 dB based on channels in real systems
 - view #2: 32 dB is impractical, 28 to 30 dB or less is more realistic
 - -need to arrive at mutually acceptable value
- For copper cable, historically...
 - -physical length of 3 m is important
 - backplane PMD specifications assumed for end to end channel

Length trade offs for objectives

- Choice of reach impacts net system cost, power, and density.
- Shorter reach backplane PHY
 - -for shorter channels, impact is lower power
 - for longer channels, retimers are needed; impact is higher cost, more components
 - for copper cables, might not get the 3 m reach that is historically required
- Longer reach backplane PHY
 - -for shorter channels, impact is more power
 - for longer channels, fewer channels need retimers; impact is lower net system cost and fewer components
- A trade off requires considerable analysis and discussion.

Backplane Objectives, Possible Forms

- Base template
 - Define a <rate> PHY for operation over a printed circuit board backplane with <details>.
- •<rate>
 - "one-lane 50 Gb/s"
 - "two-lane 100 Gb/s"
 - "four-lane 200 Gb/s"
- <details>, common to all rates
 - "<blank>", i.e., no reach specified, to be addressed by March
 - "channel insertion loss of up to at least <IL>"
- <1L>
 - "TBD dB at 13.3 GHz", e.g., TBD is 28, 30, 32, other value?- other form?

Copper Cable Objectives, Possible Forms

- Base template
 - Define a <rate> PHY for operation over copper twinaxial cables <details>.
- •<rate>
 - "one-lane 50 Gb/s"
 - "two-lane 100 Gb/s"
 - "four-lane 200 Gb/s"
- <details>, common to all rates
 - "<blank>", i.e., no reach specified, to be addressed by March
 - "consistent with lengths up to at least <distance>"
- <distance>
 - "TBD m", e.g., TBD = 2.5, 3, other value?
 - other from?

Proposal objective forms, final form

- For 50G
 - Define a one-lane 50 Gb/s PHY for operation over copper twinaxial cables consistent with lengths up to at least TBD m.
 - Define a one-lane 50 Gb/s PHY for operation over a printed circuit board backplane with a channel insertion loss of up to at least TBD dB at 13.3 GHz.
- For 100G
 - Define a two-lane 100 Gb/s PHY for operation over copper twinaxial cables consistent with lengths up to at least TBD m.
 - Define a two-lane 100 Gb/s PHY for operation over a printed circuit board backplane with a channel insertion loss of up to at least TBD dB at 13.3 GHz.
- For 200G
 - Define a four-lane 200 Gb/s PHY for operation over copper twinaxial cables consistent with lengths up to at least TBD m.
 - Define a four-lane 200 Gb/s PHY for operation over a printed circuit board backplane with a channel insertion loss of up to at least TBD dB at 13.3 GHz.

Proposal objective forms, remove controversial details

- For 50G
 - Define a one-lane 50 Gb/s PHY for operation over copper twinaxial cables consistent with lengths up to at least TBD m.
 - Define a one-lane 50 Gb/s PHY for operation over a printed circuit board backplane with a channel insertion loss of up to at least TBD dB at 13.3 GHz.
- For 100G
 - Define a two-lane 100 Gb/s PHY for operation over copper twinaxial cables consistent with lengths up to at least TBD m.
 - Define a two-lane 100 Gb/s PHY for operation over a printed circuit board backplane with a channel insertion loss of up to at least TBD dB at 13.3 GHz.
- For 200G
 - Define a four-lane 200 Gb/s PHY for operation over copper twinaxial cables consistent with lengths up to at least TBD m.
 - Define a four-lane 200 Gb/s PHY for operation over a printed circuit board backplane with a channel insertion loss of up to at least TBD dB at 13.3 GHz.

Proposal objective forms, short term compromise

- These forms would be a baseline goal for this meeting.
 - More details can be added if agreement can be reached at this meeting.
- For 50G
 - Define a one-lane 50 Gb/s PHY for operation over copper twinaxial cables.
 - Define a one-lane 50 Gb/s PHY for operation over a printed circuit board backplane.
- For 100G
 - Define a two-lane 100 Gb/s PHY for operation over copper twinaxial cables.
 - Define a two-lane 100 Gb/s PHY for operation over a printed circuit board backplane.
- For 200G
 - Define a four-lane 200 Gb/s PHY for operation over copper twinaxial cables.
 - Define a four-lane 200 Gb/s PHY for operation over a printed circuit board backplane