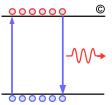
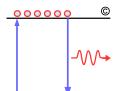

Feasibility of 30 dB Channel at 50 Gb/s

Ali Ghiasi Ghiasi Quantum LLC

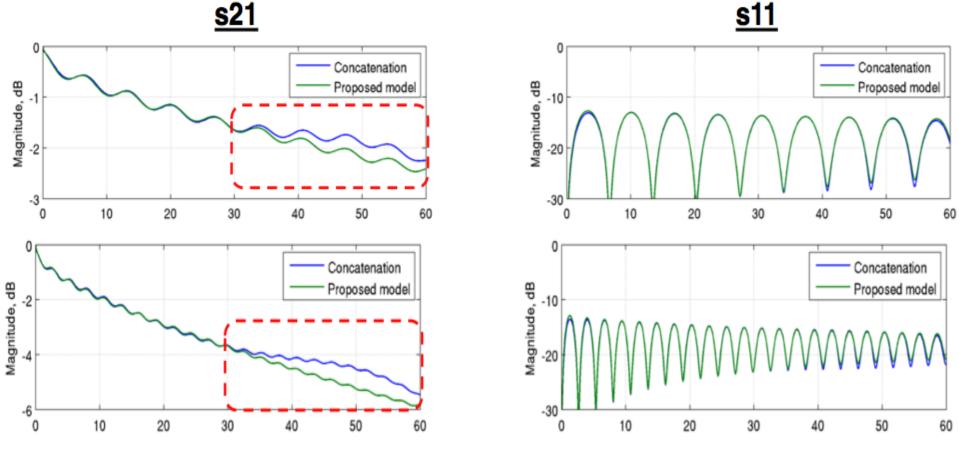
NGOATH AdHoc Meeting

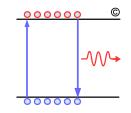

March 2, 2016

Overview


- IEEE COM package is ~0.6 dB more pessimistic than representative GZ²41[°] packages with similar length
- Baseline CDAUI-8 C2C COM parameters were tightening to provide 2+ dB of COM margin on following 30 dB channels
 - TE Whisper Std 1 m backplane
 - TE Whisper 1 m backplane with Embedded Cap PAM4
 - IBM 1 m backplane
 - IBM 30 dB backplane
- TE Whisper has 4 FEXT and 4 NEXT aggressors
 - Typical system will group the TX and RX pairs in effect reducing the NEXT aggressors
 - IBM backplane based on older connector is performing as good as TE Whisper because of the TX and RX lanes group therefore eliminating NEXT
- IBM channels were based on older system and connector, since then there are several new improved connector in the market
 - Molex Impel and Impel+
 - FCI ExaMax
- Typical 50G PAM4 receiver will use CTLE/Long FFE and possibly followed by 1-2 tap DFE is a significant deviation from current COM models
 - Current COM model indicates the need for large pre-cursors but real receiver with long FFE does not need the pre-cursor instead needs more post-cursors!

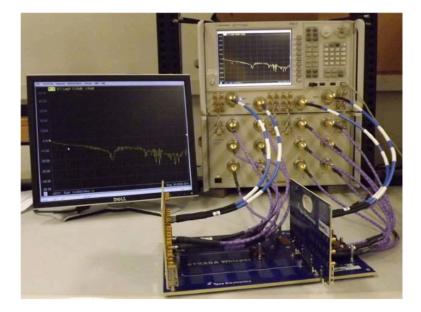
Changes Made to Baseline CDAUI-8 C2C COM parameter for 50G KP4




		000000		
Parameters	CDAUI-8 C2C COM Parameters	50G KP4 COM Parameters		
Baudrate	26.5625 GBd	26.5625 GBd		
Device Capacitance Cd [TX, RX]	[0.28, 0.28] pf	[0.2, 0.2] pf		
BGA pad Cp [TX, RX]	[0.11, 0.11] pf	[0.11, 0.11] pf		
CTLE Gain	15 dB	18 dB		
G_DC_HP	4 dB	6 dB		
TX SNR	31.1 dB	32 dB		
DER	1E-5	1E-4		
# of taps N_b	10	16, 20, 24		
B_max(1)	0.5	0.75		
B_max(2N_b)	0.2	0.375		
C(0)	0.6	0.6		
C(1)	0.35	NA (did not help & to speed up)		
C(-1)	-0.15	-0.24 (max value used for channels)		
C(-2)	ΝΑ	+0.06 (max value used for channels)		
Package Zc impedance	85 Ω	90 Ω		
COM threshold	3 dB	2 dB		

IEEE Package Model

- IEEE package has strong ripple in the return loss and SDD21
 - Representative GZ-41 packages have more than 0.6 dB of COM margin compare to IEEE package.



H17-H18

G17-G18

F17-F18

TE Whisper 40" Backplane

- Board Material = Megtron6 VLP
- Trace length = 5"
- Trace geometry = Stripline
- Trace width = 6 mils
- Differential trace spacing = 9 mils
- PCB thickness = 110mils, 14 layers
- Counterbored vias, up to 6mil stub
- Test Points = 2.4mm (included in data)

BACKPLANE

- Board Material = Megtron6 HVLP Use Dataset 1 includes
- Trace length = 30"
- Trace geometry = Stripline
- Trace width = 6 mils
- Differential trace spacing = 9 mils
- PCB thickness = 200 mils, 20 layers
- · Counterbored vias, up to 6mil stub

CONNECTORS

4 Near-End and 4 Far-End measurements
Data is from 0-30GHz in 10MHz steps

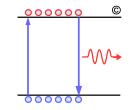
H11-H12

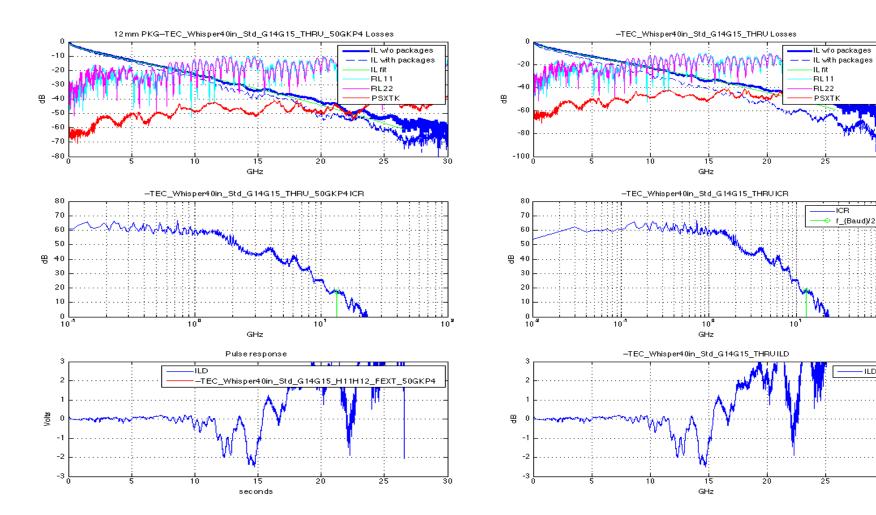
G11-G12

F11-F12

Mated standard STRADA

H14-H15

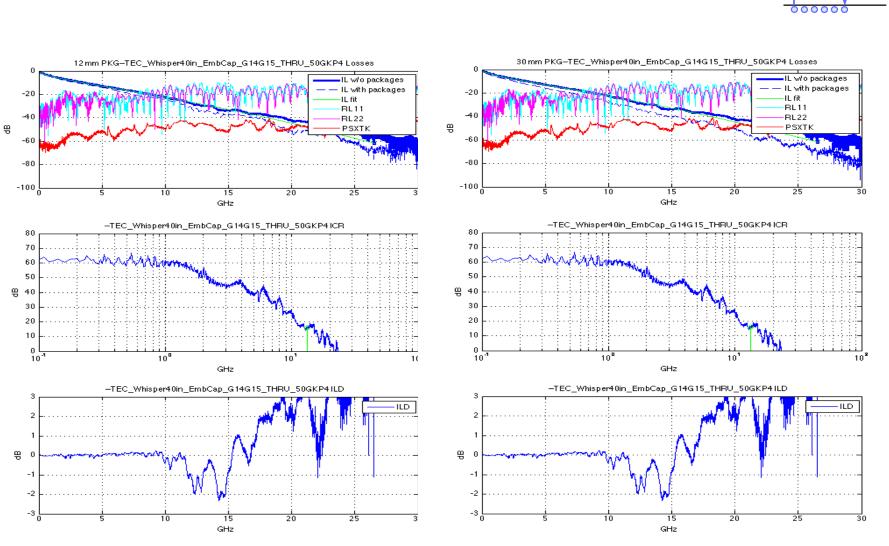

G14-G15


F14-F15

All data is measured and includes 2.4mm test points
Measurements are pair G14-G15 centric .s4p files

- Whisper connector at each end
- Dataset 2 includes
 - Mated Embedded Capacitor STRADA Whisper connector at one end and,
 - Mated standard STRADA
 Whisper connector at other end

TE Whisper 1 m Std Backplane http://www.ieee802.org/3/bj/public/jul13/tracy_3bj_01_0713.pdf



30

ILD

TE Whisper 1 m Backplane with Imbedded Cap

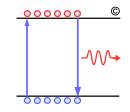
http://www.ieee802.org/3/bj/public/jul13/tracy_3bj_01_0713.pdf

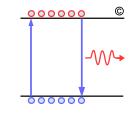
A. Ghiasi

7

©

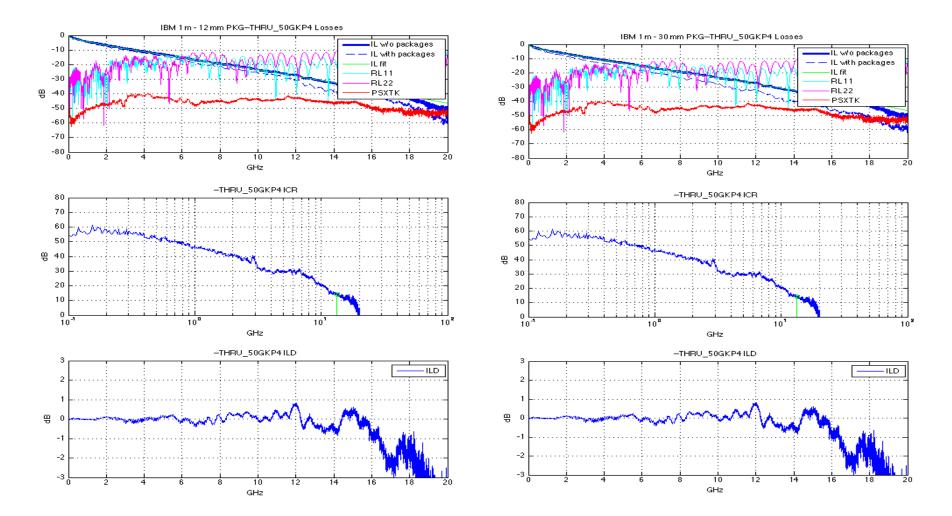
-1//->

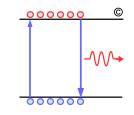

000000


Summary Results for TE Whisper 1 m Backplane

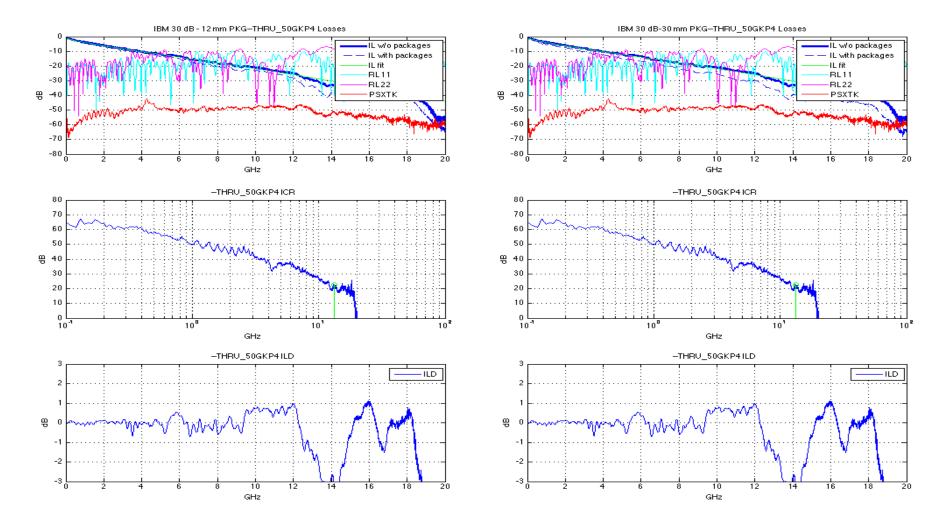
To safely say a channel passes 2 dB of COM margin is required!

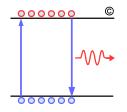
– Pre C(-2)_{max}=0.04, C(-1)_{min}=-0.22


Test Cases	Channel IL (dB)	DFE	ISI/Noise/ XTALK	ILD	ICN (mV)	PSXT (mV)	COM (dB)
Std Backplane IEEE 12 mm Package	29.8	24	35/65/0%	0.39	0	0	5.05
Std Backplane IEEE 30 mm Package	29.8	24	28/72/0%	0.39	0	0	4.58
Std Backplane IEEE 12 mm Package	29.8	24	22/40/39%	0.37	1.63	3.22	2.82
Std Backplane IEEE 30 mm Package	29.8	24	21/41/38%	0.37	1.63	2.63	2.23
Std Backplane IEEE 12 mm Package	29.8	20	23/39/38%	0.37	1.67	3.22	2.75
Std Backplane IEEE 30 mm Package	29.8	20	22/41/37%	0.37	1.67	2.66	2.2
Std Backplane IEEE 12 mm Package	29.8	16	23/39/38%	0.37	1.67	3.19	2.66
Std Backplane IEEE 30 mm Package	29.8	16	22/41/37%	0.37	1.67	2.66	2.17
ImbCap Backplane IEEE 12 mm Package	29.8	16	24/41/35%	0.40	1.58	3.03	3.09
ImbCap Backplane IEEE 30 mm Package	29.8	16	19/44/37%	0.43	1.58	2.49	2.44



IBM-1 m Backplane

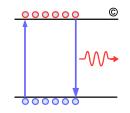

http://www.ieee802.org/3/100GCU/public/ChannelData/ibm_11_0909/patel_02_0911.pdf


IBM-30 dB Backplane

http://www.ieee802.org/3/100GCU/public/ChannelData/IBM_11_0518/patel_02_0511.pdf

10

Summary Results for IBM 1 m and 30 dB Backplanes


To safely say a channel passes 2 dB of COM margin is required!

– Pre C(-2)_{max}=0.06, C(-1)_{max}=-0.24

Test Cases	Channel IL (dB)	DFE	ISI/Noise/ XTALK	ILD	ICN (mV)	PSXT (mV)	COM (dB)
Patel_03* 1m IEEE 12 mm Package	31.1	16	24/38/38%	0.35	2.72	2.88	2.56
Patel_03 1m IEEE 30 mm Package	31.1	16	21/44/34%	0.35	2.72	2.20	2.21
Patel_03 1m IEEE 12 mm Package	31.1	20	23/38/38	0.35	2.73	2.88	2.59
Patel_03 1m IEEE 30 mm Package	31.1	20	20/45/35	0.35	2.73	2.22	2.28
Patel_02 30 dB IEEE 12 mm Package	30.4	16	47/43/10%	0.71	1.54	1.65	3.56
Patel_02 30 dB IEEE 30 mm Package	30.4	16	40/51/10%	0.71	1.54	1.22	3.52
Patel_02 30 dB IEEE 12 mm Package	30.4	20	47/43/10%	0.71	1.54	1.65	3.56
Patel_02 30 dB IEEE 30 mm Package	30.4	20	40/51/10%	0.71	1.54	1.22	3.52

* Patel_03 frequency range stops at 20 GHz and may result in some truncation error.

COM analysis show feasibility of operating at 50 Gb/s over representative 802.3bj backplane with 30 dB loss

- The TE Whisper channel do not have TX and RX grouping and with TX/RX grouping COM margin will improve
- IBM backplane are legacy 6+ years old and some of the 30 dB channels have more than 3 dB of COM margins
 - Since these system were built two generation of improved connector have been introduced to the market
- COM package has ~0.6 dB higher penalty than representative GZ-41 packages with similar length
- Typical 50G PAM4 receiver will use CTLE/Long FFE and possibly followed by 1-2 tap DFE a significant deviation from current COM models
 - Current COM model will indicates the need for large pre-cursors but real receiver with long FFE does not need the pre-cursor instead needs more post-cursors!
- 50GbE & NGOATH objective should be based on 30 dB during study phase to further refine the channel parameters and COM during the study phase.