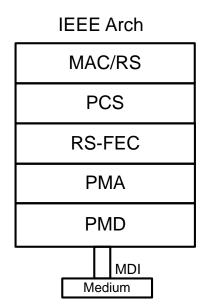
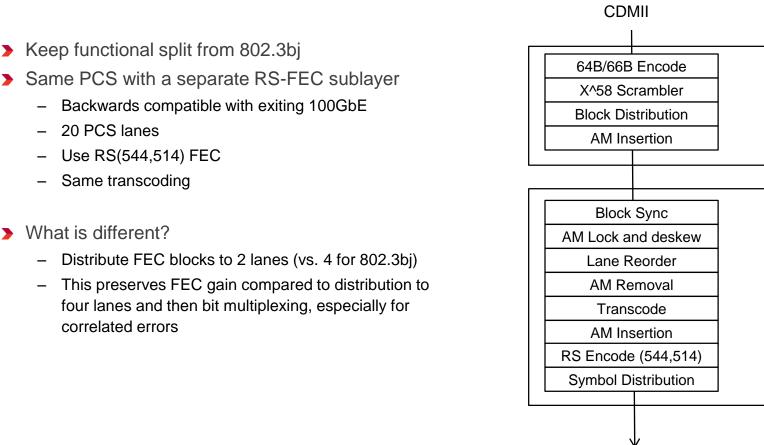
Architectural Options and Technical Feasibility of 100GbE

IEEE P802.3 Next Generation 100 Gb/s Ethernet & 200 Gb/s Ethernet Study Group

January 2016


Mark Gustlin - Xilinx

Introduction


- This looks at an architectural option and technical feasibility of next generation 100GbE
 - Based on 50Gb/s per lane signaling
- The following assumes reuse from 802.3ba/bj architecture, and that FEC is always required
 - One person noted at the study group that they believed for the MMF PMD, KP4 (RS(544,514)) is needed
- > Adopted objectives:
 - Define a 2 lane 100 Gb/s PHY for operation over copper Twinaxial cables
 - Define a 2 lane 100 Gb/s PHY for operation over printed circuit board backplane
 - Define a 2 lane 100 Gb/s PHY for operation over MMF with lengths up to at least 100m

PCS/FEC Architecture

> Based on the draft 802.3bj system architecture

Possible TX PCS/FEC Data Flow

PMA Interface

PCS

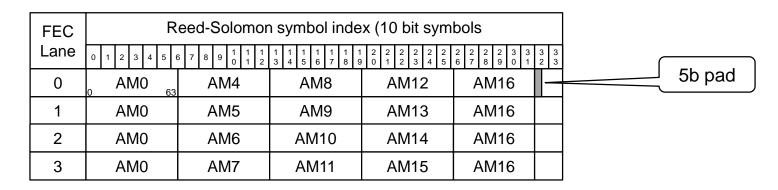
RSFEC

Data Distribution

This is the format for 802.3bj:

FEC	R	eed-Solomor				
Lane	0 1 2 3 4 5	6 7 8 9 1 1 1 0 1 2	1 1 1 1 1 1 1 1 3 4 5 6 7 8 9	2 2 2 2 2 2 2 0 1 2 3 4 5	2 2 2 2 3 3 3 6 7 8 9 0 1 2	2 3
0	0 AMO 63	AM4	AM8	AM12	AM16	5b pad
1	AM0	AM5	AM9	AM13	AM16	
2	AM0	AM6	AM10	AM14	AM16	
3	AM0	AM7	AM11	AM15	AM16	

> This is a possible format for 2x50G 100GbE:

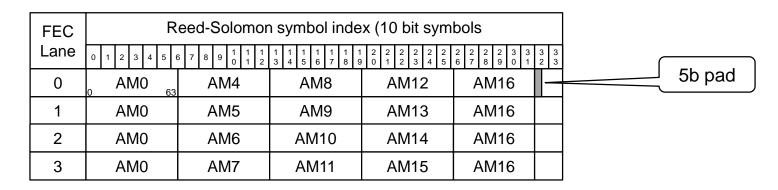

FEC	Reed-Solomon symbol index (10 bit symbols											
Lane	0 1 2 3 4 5 6	5 7 8 9 1 1 1 0 1 2	1 1 1 1 1 1 1 3 4 5 6 7 8 9	2 2 2 2 2 2 2 0 1 2 3 4 5	2 2 2 2 3 3 6 7 8 9 0 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4 5 6 7 8 9 <mark>1</mark> 0	1 1 1 1 1 1 1 1 2 3 4 5 6 7	1 1 2 2 2 2 8 9 0 1 2 3	2 2 2 2 2 2 2 4 5 6 7 8 9	3 3 0 1	
0	0 AMO 63	AM0	AM4	AM6	AM8	AM10	AM12	AM14	AM16	AM18		
1	AM0	AM0	AM5	AM7	AM9	AM11	AM13	AM15	AM17	AM19		

Backwards compatibility

- Does the PCS/FEC for the these projects need to run over 4 lanes (4x25G)?
- > The RS(544,514) is not compatible with deployed interfaces
 - It has more overhead and therefore the lane rate is higher
 - And is not RS(528,514)
- The proposed format could be sent over 4 lanes, by splitting up the blocks to the same format at 802.3bj
- > They could also be bit inverse muxed to 4 lanes
 - But to go back to 2 lanes you would need to be protocol aware

Options for Backwards Compatibility

> Re-use 802.3bj as is, with RS(528,514), bit mux to get to 2 lanes



T=7 for this code, worst case with a single 4-bit burst error you can use up T=4!

Options for Backwards Compatibility

> Re-use 802.3bj as is, with RS(544,514), bit mux to get to 2 lanes

T=15 for this code, worst case with a single 4-bit burst error you can use up T=4, not as bad

But no implementations implement this today for 100GbE, so no real backwards compatibility?

Conclusion

- This presentation looks at one option for the 100GbE architecture
- This architecture is feasible, it follows 802.3ba/bj architectures which has been shown to be technically feasible
- This maximize reuse and allows one PCS/FEC design to support 4x25G and 2x50G, things that are different
 - RS(544,514) which is in 802.3bj but rarely used
 - Distribution to two lanes instead of four lanes
 - Per lane rate of 26.5625G
- Once technology is chosen for the PMD objectives, then we can validate that the gain is enough

Thanks!