Considerations on objectives for 50G/100G/200G Ethernet SMF PMDs

Peter Stassar

Ad Hoc, 9 December 2015

Introduction

 The 50GbE/100GbE/200GbE Study Groups will need to develop smart objectives for SMF applications

In the widest sense 4 versions can be imagined, 500m, 2km, 10km, 40km.

In this presentation special attention is given to a 10km objective for all projects and 40km for 50GbE

■ We would expect to re-use from the 400GbE BS project and possibly from other work (e.g. MSAs or ITU-T), where 25G APDs are envisioned to be used.

Channel insertion loss extrapolations from 400GBASE-FR8 and 400GBASE-LR8

Assumptions: 1:8 mux/demux 3 dB loss each, 1:4 mux/demux 2 dB each, 1:2 mux/demux 1 dB each, plus using KP4 FEC

	400GBASE-FR8	400GBASE-LR8	Unit
P802.3bs, Draft 1.1			
Clause 123	4	6.3	dB
8x50G PAM4 configuration			
4x50G PAM4 configuration			
200GBASE-xR4	6	8.3	dB
Gaining 2dB			
2x50G PAM4 configuration			
100GBASE-xR2	8	10.3	dB
Gaining 4dB			
1x50G PAM4 configuration			
50GBASE-xR	10	12.3	dB
Gaining 6dB			

Needed channel insertion losses versus re-use BS

	500m	2km	10km
50GBASE-xR	3 dB	4 dB	6.3 dB Re-use FR8 Margin 3.7 dB
100GBASE-xRn N = 1 or 2	3 dB	4 dB	6.3 dB Re-use FR8 Margin 1.7 dB
200GBASE-xRn n = 2 or 4	3 dB	4 dB	6.3 dB Re-use FR8 improved by 0.3 dB

Considerations on SMF objectives 50GbE

- Achieving a 50GBASE-LR budget with 6.3 dB is relatively easy re-using technology from 400GBASE-FR8 with single lane 50G PAM4
- It is difficult to imagine that a 50GBASE-FR implementation will have any significant cost advantage compared to an LR implementation
- It is also difficult to imagine that a 50GBASE-DR implementation will have any significant cost advantage compared to an LR implementation
- Probably a single objective can address 500m 10km SMF duplex applications.
- Maybe even a 40km SMF duplex objective is feasible. This will require further analysis looking at the feasibilities when using 25G APD technology

Considerations on SMF objectives 100GbE

- Achieving a 100GBASE-LR2 budget with 6.3 dB is relatively easy re-using technology from 400GBASE-FR8 with dual lane 50G PAM4, at least if KP4 FEC is chosen
- It is therefore relatively easy to add an objective for 100GbE 10km duplex
 SMF

Considerations on SMF objectives 200GbE

- Achieving a 200GBASE-LR4 budget with 6.3 dB is relatively easy achievable re-using technology from 400GBASE-FR8 & 400GBASE-LR8 technology
- It is therefore relatively easy to add an objective for 200GbE 10km duplex SMF

Q & A

Thank you