

200G-PSM4: Potential Specifications

Brian Welch (Luxtera) Tom Palkert (Luxtera)

www.luxtera.com

200G-PSM4: Potential Specifications

- The intent of this presentation is to demonstrate how a 200G solution over a PSM4 fiber plant could be specified.
- This presentation is in response to confusion at the last 802.3 meeting as to what proposal one might expect were there to be a 200G Ethernet 500m SMF reach objective adopted.
- This presentation is not a baseline proposal, but is the authors current view of what might be proposed if a 200GE SMF 500m reach objective is adopted.

- This presentation does not address economic feasibility
 - There will be a separate presentation forthcoming on that topic
- This presentation does not address broad market potential
 - There will be a separate presentation forthcoming on that topic
- This presentation does not address technical feasibility
 - There will be a separate presentation forthcoming on that topic

- Configuration: A 4x50 Gb/s parallel SMF interconnect.
 - PSM4 = Four fibers per direction
- Reach >= 500m
- Lane Speed: 50 Gb/s per lane using 25 GBaud-PAM4 optical signaling
- Uncorrected BER < 2e-4
- Single wavelength solution

200G-PSM4 Block Diagram

LUXTERA

	200G-PSM4
Reach, min (m)	500
Signaling rate, each lane (Range)	26.5625 ± 100 ppm GBd
Encodingtype	PAM4
Wavelength(s)	1303.5 to 1316.5 nm
Uncorrected BER	< 2.0e-4
Channel insertion loss, max (dB) ⁺	3
Allocation for penalties, at max TDP (dB) [‡]	2.5
MPI Penalty	TBD
Power margin, at min TDP (dB)	9.1
Maximum discrete reflectance (dB)	TBD

† From <u>http://www.ieee802.org/3/bs/public/14_05/kolesar_3bs_01_0514.pdf</u> All Parameters Subject to Change

Transmitter Specifications

- Max OMA and ER specified based on outer Tx_OMA_{outer}
- Sensitivity and link budget based on inner Tx_OMA_{low/mid/upp}
 - Spec applies to minimum of 3 inner eye transitions

200G-PSM4: Transmitter Specifications (TP2)

	200G-PSM4
Signaling rate, each lane (Range)	26.5625 ± 100 ppm GBd
Encodingtype	PAM4
Wavelength(s)	1303.5 to 1316.5 nm
OMA _{outer} , each lane, max (dBm)	2.8
OMA _{outer} , each lane, min (dBm)	-2.5
OMA _{low/mid/upp} , each lane, min (dBm)	-7.3
ER _{outer} , each lane, min (dB)	4.5
Average launch power, each lane max (dBm)	3
Average launch power, each lane min (dBm)	-4.6
TDP, each lane, max (dB)	2.5
Transmitter RIN _{ave} , max (dB/Hz)	-142
Transmitter reflectance, max (dB)	TBD
Transmitter Eye Mask	TBD

All Parameters Subject to Change

200G-PSM4: Receiver Specifications (TP3)

	200G-PSM4	
Signaling rate, each lane (Range)	26.5625 ± 100 ppm GBd	
Encoding type	PAM4	
Wavelength(s)	1303.5 to 1316.5 nm	
Receiver sensitivity (OMA), each lane max (dBm) ⁺	-11.6	
Average receive power, each lane max (dBm)	3.0	
Average receive power, each lane min (dBm)	-7.6	
Damage threshold (dBm)	6.5	
Receiver reflectance, max (dB)	-26	
Stressed receiver sensitivity (OMA), each lane max (dBm)	TBD	
Conditions of stressed receiver sensitivity test:		
Vertical eye closure penalty, each lane (dB)	TBD	
Stressed eye J2 Jitter, each lane (UI)	TBD	
Stressed eye J4 Jitter, each lane (UI)	TBD	
Stressed eye mask definition	TBD	

† Received sensitivity reported in 'NRZ mode' and uncorrected BER, equivalent to sensitivity for any sub-eye low/mid/upp All Parameters Subject to Change

- Configuration: A 4x50 Gb/s parallel SMF interconnect.
 - PSM4 = Four fibers per direction
- Reach >= 500m
- Lane Speed: 50 Gb/s per lane using 25 GBaud-PAM4 optical signaling
- Uncorrected BER < 2e-4
- Single wavelength solution

- There will be future contributions supporting the adoption of a 500m objective.
- Those contributions will address:
 - Economic feasibility
 - Broad market potential
 - Economic feasibility
 - Distinct Identity

