Channel Data Capacity Analysis for B10GAUTO

Eric DiBiaso, Bert Bergner

November 11-14, 2019

Data Capacity of Automotive Data Cabling How fast can we go?

- Identify physical limits
- Estimate maximum data rate
- Consider robust system design and automotive requirements
- Propose possible system solutions for data rates up to 25 Gbps

Calculation of Achievable Data Rates

Considerations:

- Baseband signaling on 0.14 mm² STP cabling
- Channel transmission parameter *Return Loss, Insertion Loss*
- Environmental degradation
- Electromagnetic emission limits
- Electromagnetic immunity
- PHY dependent transmission power limits, receiver noise, etc.

Shannon-Hartley theorem: (for White Gaussian Noise)

Data Capacity = Bandwidth $\cdot ld \left(1 + \frac{Signal}{Noise}\right)$

Channel Model Including EMI

Channel Capacity – Methodology (Example Only)

Channel Data Capacity Results

Assumptions:

- -125 dBm/Hz (Rx System Noise)
- 2 dBm TX Power

Original STP link
(0.14 mm², 15m Cable Length

- Increased RL (-30dB) & 15m Cable Length
- Increased RL (-30dB), reduced EMI (-15dB) & 15m Cable Length
- Increased RL (-30dB), reduced EMI (-15dB) & 11m Cable Length

Channel Capacity Analysis – Conclusions

- Data rates > 10 Gbps possible on single shielded pair
- Improvements by increased return loss and shielding → appropriate connectors and cables
- Insertion loss is primary limiting parameter
- Useable frequency bandwidth << 10 GHz

Channel Capacity Analysis Options for Robust 25+ Gbps Systems

Decreased insertion loss

 reduced length, improved STP/SPP

 \rightarrow alternative media (e.g. coax)

- Multiple number of Tx/Rx pairs

 multi lane solutions should be investigated
- Comparison with similar analysis from others would be important to confirm assumptions

Thank You!!!